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Abstract

Federated Averaging (FedAvg) is known to experience con-
vergence issues when encountering significant clients system
heterogeneity and data heterogeneity. Server momentum has
been proposed as an effective mitigation. However, existing
server momentum works are restrictive in the momentum for-
mulation, do not properly schedule hyperparameters and fo-
cus only on system homogeneous settings, which leaves the
role of server momentum still an under-explored problem. In
this paper, we propose a general framework for server mo-
mentum, that (a) covers a large class of momentum schemes
that are unexplored in federated learning (FL), (b) enables a
popular stagewise hyperparameter scheduler, (c) allows het-
erogeneous and asynchronous local computing. We provide
rigorous convergence analysis for the proposed framework.
To our best knowledge, this is the first work that thoroughly
analyzes the performances of server momentum with a hy-
perparameter scheduler and system heterogeneity. Extensive
experiments validate the effectiveness of our proposed frame-
work.

1 Introduction

Federated Averaging (FedAvg) (McMahan et al. 2017),
which runs multiple epochs of Stochastic Gradient Descent
(SGD) locally in each client and then averages the local
model updates once in a while on the server, is probably
the most popular algorithm to solve many federated learning
(FL) problems, mainly due to its low communication cost
and appealing convergence property.

Though it has seen great empirical success, vanilla Fe-
dAvg experiences an unstable and slow convergence when
encountering client drift, i.e., the local client models move
away from globally optimal models due to client heterogene-
ity (Karimireddy et al. 2020). On the server side, FedAvg
is in spirit similar to an SGD with a constant learning rate
one and updates the global model relying only on the aver-
aged model update from the current round, thus extremely
vulnerable to client drift. Note that in non-FL settings, SGD
in its vanilla form has long been replaced by some momen-
tum scheme (e.g. heavy ball momentum (SHB) and Nes-
terov’s accelerated gradient (NAG)) in many tasks, as mo-
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mentum schemes achieve an impressive training time sav-
ing and generalization performance boosting compared to
competing optimizers (Sutskever et al. 2013; Wilson et al.
2017), which promises a great potential to apply momentum
in FL settings as well. Incorporating server momentum es-
sentially integrates historical aggregates into the current up-
date, which could conceptually stabilize the global update
against dramatic local drifts.

Though various efforts have been made to understand the
role of server momentum in FL, e.g. (Hsu, Qi, and Brown
2019; Rothchild et al. 2020), it is still largely an under-
explored problem due to the following reasons:

(1) Lack of diversity in momentum schemes. Most exist-
ing server momentum works only focus on SHB (e.g. Fe-
dAvgM (Hsu, Qi, and Brown 2019)). It is unclear whether
many momentum schemes that outperformed SHB in non-
FL settings can also perform better in FL, and there is no
unified analysis for momentum schemes other than SHB.

(2) No hyperparameter schedule. Properly scheduling hy-
perparameters is key to train deep models more efficiently
and an appropriate selection of server learning rate ηt is
also important in obtaining optimal convergence rate (Yang,
Fang, and Liu 2021). Existing works either still employ a
constant server learning rate one or consider a ηt schedule
that is uncommonly used in practice, e.g., polynomially de-
cay (i.e., ηt ∝ 1

tα
) (Khanduri et al. 2021). Moreover, it is

known that increasing momentum factor β is also a criti-
cal technique in deep model training (Sutskever et al. 2013;
Smith, Kindermans, and Le 2018), while to our best knowl-
edge, there is no prior work considering time-varying β in
FL.

(3) Ignoring client system heterogeneity. Existing works
make unrealistic assumptions on system homogeneity and
client synchrony, e.g., clients are sampled uniformly at ran-
dom, all participating clients synchronize at each round t,
and all clients run identical number of local epochs, none of
which holds in most cross device FL deployments (Kairouz
et al. 2021). System heterogeneity (i.e., the violation of
above assumptions), alongside with data heterogeneity, is
also a main source client drift (Karimireddy et al. 2020).
Thus, ignoring it would provide an incomplete understand-
ing of the role of server momentum.

To address the above limitations, we propose a novel
formulation which we refer to as Federated General Mo-
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mentum (FedGM). FedGM includes the following hyperpa-
rameters, learning rate η, momentum factor β, and instant
discount factor ν. With different specifications of (η, β, ν),
FedGM subsumes the FL version of many popular momen-
tum schemes, most of which have never been explored in FL
yet.

We further incorporate a widely used hyperparameter
scheduler “constant and drop” (a.k.a. “step decay”) in
FedGM. We refer to this framework as multistage FedGM.
Specifically, with a prespecified set of hyperparameters
{ηs, βs, νs}Ss=1 and training lengths {Ts}Ss=1, the training
process is divided into S stages, and at stage s, FedGM with
{ηs, βs, νs} is applied for Ts rounds. Compared to many
unrealistic schedule in existing works, “constant and drop”
is the de-facto scheduler in most model training (Sutskever
et al. 2013; He et al. 2016; Huang et al. 2017). Multistage
FedGM is extremely flexible, as it allows the momentum
factor to vary stagewise as well, and subsumes single-stage
training as a special case. We provide the convergence anal-
ysis of multistage FedGM. Our theoretical results reveal
why stagewise training can provide empirically faster con-
vergence.

Furthermore, in order to understand how server momen-
tum behaves in the presence of system heterogeneity, we
propose a framework that we refer to as Autonomous Mul-
tistage FedGM, in which clients can do heterogeneous and
asynchronous computing. Specifically, we allow each client
to (a) update local models based on an asynchronous view of
the global model, (b) run a time-varying, client-dependent
number of local epochs, and (c) participate at will. We
provide convergence analysis of Autonomous Multistage
FedGM. Autonomous Multistage FedGM is a more realistic
characterization of real-world cross-device FL applications.

Finally, we conduct extensive experiments that validate,
(a) FedGM is a much more capable momentum scheme com-
pared with existing FedAvgM in both with and without sys-
tem heterogeneity settings; and (b) multistage hyperparame-
ter scheduler further improves FedGM effectively.

Our main contributions can be summarized as follow,

• We propose FedGM, which is a general framework for
server momentum and covers a large class of momentum
schemes that are unexplored in FL. We further propose
Multistage FedGM, which incorporates a popular hyper-
parameter scheduler to FedGM.

• We show the convergence of multistage FedGM in both
full and partial participation settings. We also empirically
validate the superiority of multistage FedGM. To our best
knowledge, this is the first work that provides convergence
analysis of server-side hyperparameter scheduler.

• We propose Autonomous Multistage FedGM, which re-
quires much less coordination between server and workers
than most existing algorithms, and theoretically analyze
its convergence. Our work is the first to study the interplay
between server momentum and system heterogeneity.

The rest of the paper is organized as follows. In Section 2,
we formally introduce federated optimization. In Section 3,
we introduce Federated General Momentum (FedGM), fol-
lowed by multistage FedGM and its convergence analysis

Algorithm 1: FedOPT (Reddi et al. 2020): A
Generic Formulation of Federated Optimization

Input: Number of clients n, objective function
f(x) = 1

n

∑n
i=1 fi(x), initialization x0,

Number of communication rounds T , local
learning rate ηl, local number of updates K ,
global hyperparameters H;

1 for t ∈ {1, ..., T } do
2 Randomly sample a subset St of clients
3 Server sends xt to subset St of clients
4 for each client i ∈ St do

5 ∆i
t = LocalOPT (i, ηl,K, xt)

6 end

7 Server aggregates ∆t =
1

|St|
∑

i∈St
∆i

t

8 xt+1 = ServerOPT (xt,∆t,H)
9 end

10 return xT

Algorithm 2: LocalOPT (i, ηl,K, xt)

Input: client index i, data distribution Di, local
learning rate ηl, local updating number K ,
round t, global model xt;

1 Initialize xi
t,0 ← xt

2 for k ∈ {0, 1, ...,K − 1} do

3 Randomly sample a batch ξit,k from Di

4 Compute git,k = ∇fi(xi
t,k, ξ

i
t,k)

5 Update xi
t,k+1 = xi

t,k − ηlg
i
t,k

6 end

7 ∆i
t = xt − xi

t,K return ∆i
t

in Section 4. In Section 5, we introduce Autonomous multi-
stage FedGM and provide its convergence analysis. Section
6 presents the experimental results. Due to the page limit,
we leave related work, all proofs, and additional experimen-
tal results to the Appendix.

2 Background: FedOPT and FedAvg

Many FL tasks can be formulated as solving the following
optimization problems,

min
x∈Rd

f(x) ,
1

n

n∑

i=1

fi(x), where fi(x) = Eξ∼Di
fi(x, ξ).

(1)
where n is the total number of clients, x is the model pa-
rameter with d dimension. Each client i has a local data
distribution Di and a local objective function fi(x) =
Eξ∼Di

fi(x, ξ). The global objective function is the averaged
objective among all clients.Di can be very different fromDj

when i 6= j.
FedAvg (McMahan et al. 2017) and its variants are a spe-

cial case of a more flexible formulation, FedOPT (Reddi
et al. 2020), which is formalized in Algorithm 1. Suppose
the total number of rounds is T , and the global model param-



eter is {xt}Tt=1. At each round t, the server randomly sam-
ples a subset of clients St and sends the global model xt to
them. Upon receiving xt, each participating client would do
LocalOPT (Algorithm 2). Specifically, each client i would
initialize their local model at xt, run K steps of local SGD
with local ηl and the local model is updated to xi

t,K . The

client then sends the local model update ∆i
t = xt − xi

t,K

back to the server. The server aggregates by averaging, i.e.
∆t =

1
|St|

∑

i∈St
∆i

t, and then triggers server-side optimiza-
tion ServerOPT, which takes xt, aggregated model update
∆t, and a hyperparameter set H as input, and outputs the
next round’s global model parameter xt+1.

In FedAvg, ServerOPT is simply xt+1 = xt −∆t, which
is in spirit identical to SGD with a constant learning rate one
if viewing ∆t as a pseudo gradient.

3 FedGM: Federated Learning with General

Momentum Acceleration

Partially due to its equivalence of constant learning rate
SGD, FedAvg has two main limitations, (a) it is extremely
vulnerable to client drift, as FedAvg relies entirely on its cur-
rent aggregate ∆t and ignores historical directions; (b) Fe-
dAvg may not be the best option in many applications, e.g.
training large-scale vision or language models (Devlin et al.
2018; Dosovitskiy et al. 2021) where its counterpart SGD is
known to be inferior to momentum or adaptive optimizers in
non-FL settings (Wilson et al. 2017; Zhang et al. 2020).

Note that in FedOPT, ServerOPT could in principle be any
type of gradient-based optimizers. In non-FL settings, the
momentum scheme is known to not only exhibit convinc-
ing accelerating effect in training, it has also achieved bet-
ter generalizability in many tasks than adaptive optimizers
like Adam (Wilson et al. 2017; Cutkosky and Mehta 2020),
which provides a strong motivation to incorporate server mo-
mentum.

Moreover, server-side momentum basically integrates his-
torical aggregates into the current update and therefore could
potentially make the global model more robust to drastic lo-
cal drifts.

Existing server momentum works mostly focus on one
specific type of momentum, i.e. stochastic heavy ball mo-
mentum (SHB) (Hsu, Qi, and Brown 2019; Rothchild et al.
2020; Khanduri et al. 2021), while ignoring many other mo-
mentum schemes that outperform SHB in many non-FL set-
tings.

In order to systematically understand the role of server
momentum schemes in FL, we propose a new algo-
rithm which we refer to as Federated General Momentum
(FedGM). FedGM replaces the ServerOPT xt+1 = xt −∆t

in FedAvg with the following,

dt+1 = (1 − β)∆t + βdt, ht+1 = (1− ν)∆t + νdt+1,

xt+1 = xt − ηht+1.
(2)

where the hyperparameter set H = {η, β, ν}. η is server
learning rate, β and ν are two hyperparameters which we
call momentum factor and instant discount factor.

By setting ν as 0, FedGM becomes FedAvg with two-
sided learning rates (Yang, Fang, and Liu 2021), i.e., choices
of η other than 1 is allowed, which we refer to as FedSGD.

By setting ν = 1, FedGM becomes FedAvgM (Hsu, Qi,
and Brown 2019) (or FedSHB), which essentially applies
server SHB, i.e. we update the model by a “momentum
buffer” dt+1. β controls how slowly the momentum buffer
is updated. FedGM could be interpreted as a ν-weighted av-
erage of the FedAvgM update step and the plain FedAvg
update step. ν is thus referred to as instant discount factor.

FedGM leverages the general formulation of QHM (Ma
and Yarats 2019) and is much more general than just
FedAvg and FedAvgM. It subsumes many other momen-
tum variants that are never explored in FL. For exam-
ple, if ν = β, FedGM becomes a new algorithm which
can be naturally referred to as FedNAG, i.e. application
of the popular optimizer Nesterov’s accelerated gradient
(NAG) to FL. Specifically, we update model by xt+1 =
xt − η [(1− β)∆t + βdt+1], where dt+1 is the momentum
buffer.

FedGM could further recover the FL version of many
other momentum schemes, e.g., SNV (Lessard, Recht, and
Packard 2014), PID (An et al. 2018), ASGD (Kidambi et al.
2018), and Triple Momentum (Van Scoy, Freeman, and
Lynch 2018), with different η, β, ν. Therefore, FedGM de-
scribes a family of momentum schemes, most of which have
not been studied yet in FL.

4 Multistage FedGM and Convergence

4.1 Proposed Algorithm: Multistage FedGM

One major limitation in FedGM (2) is that all server-side
hyperparameters are held constant, which are inconsistent
with common practice. Adaptively adjusting hyperparame-
ters throughout the training is key to the success of many
optimizers. Learning rate scheduling has been thoroughly
studied in non-FL settings, e.g., (Krizhevsky, Sutskever, and
Hinton 2012; He et al. 2016; Goyal et al. 2017; Smith 2017).
Scheduling other hyperparameters (e.g. momentum factor
and batch size) is also shown to be very effective in many
settings. For example, (Sutskever et al. 2013; Smith and Le
2018; Smith, Kindermans, and Le 2018) show a slowly in-
creasing schedule for the momentum factor β is crucial in
training deep models faster.

We focus on a simple yet effective hyperparameter sched-
uler, “constant and drop” (a.k.a. “step decay”). In its non-FL
SGD version (a.k.a. multistage SGD), with a prespecified
set of learning rates {ηs}Ss=1 and training lengths {Ts}Ss=1
(measured by number of iterations/epochs), the training pro-
cess is divided into S stages, and SGD with ηs is applied for
Ts iterations/epochs at s-th stage, where {ηs}Ss=1 is usually
a non-increasing sequence 1. We concentrate on “constant
and drop” as it is the de-facto learning rate scheduler in most
large-scale neural networks (Krizhevsky, Sutskever, and Hin-
ton 2012; Sutskever et al. 2013; He et al. 2016; Huang et al.
2017), and has been theoretically shown to achieve near-

1The name “constant and drop” refers to learning rate is
dropped by some constant factor after each stage.



Algorithm 3: Multistage FedGM

Input:
Initialization x0, number of rounds T , local learning
rate ηl, local updating number K;

Number of stages S, stage lengths {Ts}Ss=1 ;

Stagewise hyperparameters {ηs, βs, νs}Ss=1;

1 for s ∈ {1, ..., S} do
2 for t in stage s do
3 Randomly sample a subset St of clients
4 Server sends xt to subset St of clients
5 for each client i ∈ St do

6 ∆i
t = LocalOPT (i, ηl,K, xt)

7 end

8 Server aggregates ∆t =
1

|St|
∑

i∈St
∆i

t

9 dt+1 = (1− βs)∆t + βsdt

10 ht+1 = (1 − νs)∆t + νsdt+1

11 Update xt+1 = xt − ηsht+1

12 end

13 end
14 return xT

optimal rate in non-FL settings (Ge et al. 2019b; Wang, Mag-
nússon, and Johansson 2021).

The intuition behind “constant and drop” is straightfor-
ward: a large learning rate is held constant for a reasonably
long period to take advantage of faster convergence until it
saturates, and then the learning rate is dropped by a constant
factor for more refined training.

We extend “constant and drop” to FedGM in Algorithm
3, which we refer to as Multistage FedGM. In Multistage
FedGM (Algorithm 3), each stage has length Ts (T =
∑S

s=1 Ts), and has its triplet of stagewise hyperparameters
{ηs, βs, νs}Ss=1. The convergence analysis in Sec 4.2 also
applies to single-stage FedGM by S = 1.

To our best knowledge, there is no prior work giving
definitive theoretical guarantee or empirical performances of
any hyperparameter schedule in FL, especially considering
multistage FedGM is an extremely flexible framework that
allows both learning rate and momentum factor to evolve.

4.2 Convergence Analysis of Multistage FedGM

We now analyze the convergence of Algorithm 3 under both
full and partial participation settings.

We aim to optimize objective (1). Each local loss fi (and
therefore f ) may be general nonconvex function. We study
the general non-i.i.d. setting, i.e. Di 6= Dj when i 6= j. We
state the assumptions that are needed in the analysis.

Assumption 1 (Smoothness). Each local loss fi(x) is dif-
ferentiable and has L-Lipschitz continuous gradients, i.e.,
∀x, x′ ∈ R

d, we have ‖∇fi(x)−∇fi(x′)‖ ≤ L ‖x− x′‖.
And f∗ , minx f(x) exists, i.e., f∗ > −∞.

Assumption 2 (Bounded Local Variance). ∀t, i, LocalOPT
can access an unbiased estimator git,k = ∇fi(xi

t,k, ξ
i
t,k) of

true gradient∇fi(xi
t,k), where git,k is the stochastic gradient

estimated with minibatch ξit,k. And each stochastic gradient
on the i-th client has a bounded local variance, i.e., we have

E

[∥
∥
∥git,k −∇fi(xi

t,k)
∥
∥
∥

2
]

≤ σ2
l .

Assumption 3 (Bounded Global Variance). The local loss
{fi(x)} across all clients have bounded global variance, i.e.,
∀x, we have 1

n

∑n
i=1 ‖∇fi(x)−∇f(x)‖

2 ≤ σ2
g .

Assumption 1-3 are standard assumptions in nonconvex
optimization and FL research, and have been universally
adopted in most existing works (Reddi, Kale, and Kumar
2018; Li et al. 2020b; Reddi et al. 2020; Bao, Gu, and
Huang 2020; Yang, Fang, and Liu 2021; Wang, Lin, and
Chen 2022; Wu et al. 2023b,c). σ2

g = 0 in Assumption 3
corresponds to the i.i.d. setting. And we do not require the re-
strictive bounded gradient assumption (Reddi, Kale, and Ku-
mar 2018; Avdiukhin and Kasiviswanathan 2021; Wu et al.
2023a).

Recall T =
∑S

s=1 Ts is the number of rounds. Denote

the expected gradient square as {Gt , E

[

‖∇f(xt)‖2
]

}t≤T .

Define the average expected gradient square at s-th stage
as Ḡs , 1

Ts
ΣT1+···+Ts

t=T1+···+Ts−1+1Gt and the average expected

gradient square across S stages as Ḡ , 1
S

∑S
s=1 Ḡs. Bound-

ing Ḡ generalizes from bounding 1
T

∑T
t=1 E

[

‖∇f(xt)‖2
]

in single-stage to multistage setting.
To reflect the common hyperparameter scheduling prac-

tice that is adopted by existing works e.g. (Sutskever et al.
2013; Smith, Kindermans, and Le 2018; Liu, Gao, and Yin
2020), We request the stagewise hyperparameters fulfill the
following constraints,

ηS ≤ ηS−1 ≤ · · · ≤ η1 β1 ≤ β2 ≤ · · · ≤ βS < 1

W1 ≡
ηsβsνs

1− βs

and W2 ≡ Tsηs
(3)

where W1 and W2 are two constants. Constraint (3) essen-
tially requires learning rate to be non-increasing and momen-
tum factor to be non-decreasing at a similar rate, which is
consistent with common practice, e.g. for SHB and NAG,
(Sutskever et al. 2013; Smith, Kindermans, and Le 2018;
Liu, Gao, and Yin 2020) propose a scheduler for β to in-
crease and close to 1 for faster convergence. And it is also
natural for (3) to require Tsηs as a constant. As the learning
rate is decaying, more rounds in later stages are necessary
for sufficient refined training.

We now state the convergence guarantee of the multistage
training regime in FL framework.

Full Participation If all clients are required to participate
in each round, i.e. St = {1, 2, . . . , n}, we have,

Theorem 4.1. We optimize f(x) with Algorithm 3 (Full Par-

ticipation) under Assumptions 1-3. Denote η̄ , 1
S

∑S
s=1 ηs

as the average server learning rate and Cη ,
η1

ηS
. Under



the condition 2 ηl ≤ min

{

1
8KL

, 1

KSCη(Lη̄+1+L2W 2

1
Cη)

}

,

we would have:

Ḡ ,
1

S

S∑

s=1

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

E

[

‖∇f(xt)‖2
]

≤ 64

17

f(x0)− f∗

SW2ηlK
+Ψlσ

2
l +Ψgσ

2
g

where Ψl ,
32
17

L2W 2

1
T η̄ηl

nW2
+ 32

17
Lη̄ηl

n
+ 32

17
ηl

n
+ 160

17 η2l L
2K ,

and Ψg , 960
17 η

2
l L

2K2.

Corollary 4.2 (Convergence Rate of Multistage FedAvg).
Suppose νs = 0, i.e., the FedAvg algorithm that allows learn-

ing rate vary across S stages. By setting η̄ = Θ
(√

nK
)

and

ηl = Θ
(

1√
TK

)

, W2 = Θ
(

T
√
nK
S

)

, i.e. T η̄ equally divided

into S stages. W1 = 0 as νs = 0. Suppose T is sufficiently

large, i.e. T ≥ nK , we have aO
(

1√
TKn

)

convergence rate.

Remark 4.3 (Why Multistage Helps?). Corollary 4.2 indi-
cates multistage FedAvg recovers the best-known rate for
general FL nonconvex optimization approaches, e.g. SCAF-
FOLD (Karimireddy et al. 2020) and FedAdam (Reddi et al.
2020). Note single-stage FedAvg with two-sided learning
rates also achieves the same rate (Yang, Fang, and Liu 2021).
However, we do observe multistage FedAvg empirically con-
verges much better than single-stage. We can obtain insights
from Theorem 4.1 why multistage helps. We note that Ψl

is only related to average learning rate η̄ (instead of ini-
tial learning rate η1). At initial rounds, the first term with
f(x0)− f∗ dominates, and thus we could select a relatively
large η1 to ensure a more dramatic decay of this term. At
later rounds, when f(xt) − f∗ plateaus, we could enable
smaller learning rate to control η̄. Thus, Theorem 4.1 indi-
cates a less stringent reliance on η1, which enables us to
flexibly select suitable η depending on which training stage
we are in, that can still guarantee convergence.

Corollary 4.4 (Convergence Rate of Multistage FedGM).
Suppose S > 1, i.e. the multistage regime, by setting

η̄ = Θ
(√

nK
)

, ηl = Θ
(

1√
TK

)

, W2 = Θ
(

T
√
nK
S

)

. Let

W 2
1 = O

(√
nK
S

)
3. When T ≥ Kn, we have aO

(
1√

TKn

)

convergence rate.

Remark 4.5 (Why Momentum Helps?). We attribute the
empirically superior performances of momentum to two
reasons. (a) When clients are dynamically heterogeneous,
historical gradient information has regularization effect to

2The condition could be fulfilled by typical value assignment,

and would recover the typical ηl ≤ min

{

1
8KL

, 1
KLη

}

constraint

in FedAvg analysis (Yang, Fang, and Liu 2021), by setting S = 1.
3It holds by setting an infinitesimal β or ν at early stages when

η is large, but β or ν can go to 1 when η is reduced to o
(

4√
nK√
S

)

.

avoid the search direction from going wild. (b) Server learn-
ing rate η acts like a multiplier to client learning rate ηl in
FedAvg, i.e. η > 1 effectively enhances the reliance on cur-
rent round gradient. Due to the same reason as in (a), such
reliance can harm convergence. In contrast, in FedGM, β
and ν act as a buffer that could to some extent absorb the
impact from a large η. We empirically observe in Appendix
H.2, with same ηl, FedGM could sustain a much larger η,
while FedAvg diverges very easily with a moderately large
η.

Partial Participation Full participation rarely holds in re-
ality, thus we further analyze multistage FedGM in partial
participation setting 4.

Theorem 4.6. We optimize f(x) with Algorithm 3 (Partial
Participation) under Assumptions 1-3. Denote η̄ and Cη

as in Theorem 4.1. Under the condition ηl ≤ 1
8KL

, and

ηl
(
Cη + Lη̄Cη + L2W 2

1Cη

)
SK ≤ min

{
m(n−1)
n(m−1) ,

17m
282

}

,

we would have:

Ḡ ≤ 64

17

f(z0)− f∗

SW2ηlK
+ Ψlσ

2
l +Ψgσ

2
g

where Ψl ,
ηl

m
Φ+

15(n−m)K2L3η3

l

m(n−1) Φ+ 160
17 η2l L

2K , Ψg ,

90(n−m)K3L3η3

l

m(n−1) Φ + 3ηl(n−m)K
m(n−1) Φ + 960

17 η
2
l L

2K2, and Φ ,

32T η̄+32LTη̂2+32L2W 2

1
T η̄

17W2

.

Corollary 4.7 (Convergence Rate of Multistage FedGM).
Suppose S > 1, i.e. the multistage regime, by setting η̄ =

Θ
(√

mK
)

, η̂2 = Θ(mK), ηl = Θ
(

1√
TK

)

, W2 =

Θ
(

T
√
mK
S

)

and W 2
1 = O

(√
mK

)

, we have convergence

rate asO
(√

K
Tm

)

.

Remark 4.8. O
(√

K
Tm

)

recovers the best known conver-

gence rate for FL nonconvex optimization (Yang, Fang, and
Liu 2021). Similar to Remark 4.3, Theorem 4.6 shows an
reliance on average learning rate, which explains why mul-

tistage scheme helps empirically. O
(√

K
Tm

)

indicates a

slowdown effect from more local computation, which is sup-
ported by some existing works (Li et al. 2020b), while others
observe a different effect of K (Lin et al. 2020). The exact
impact of K on convergence warrants further investigation.

5 Momentum with System Heterogeneity

5.1 Autonomous Multistage FedGM

For a simplified abstraction of real world settings, most FL
algorithms make the assumption that, all clients synchronize
with the same global model and they conduct identical num-
ber of local updates at any given round. Though the assump-
tion has been adopted in most existing works (McMahan

4In each round t, the server samples a subset of clients St (sup-
pose |St| = m < n) uniformly at random without replacement, i.e.

P {i ∈ St} =
m
n

and P {i, j ∈ St} =
m(m−1)
n(n−1)

.



et al. 2017; Hsu, Qi, and Brown 2019; Li et al. 2020a; Karim-
ireddy et al. 2020; Reddi et al. 2020; Bao et al. 2022; Wang,
Lin, and Chen 2022), it rarely holds in reality.

In light of the limitations of existing works, we propose a
general framework called Autonomous Multistage FedGM
that enables the following three features, i.e. heterogeneous
local computing, asynchronous aggregation, and flexible
client participation, which is formalized in Algorithm 4.

Autonomous Multistage FedGM could effectively miti-
gate straggler effect and poor convergence issue in highly
heterogeneous cross-device deployments. We leave a more
detailed discussion of Algorithm 4 to Appendix B due to
space limit.

Specifically, in Autonomous Multistage FedGM, the
client decides when to participate in the training, and idling
between rounds or even completely unavailable are both al-
lowed. Once it decides to participate at round t, it retrieves
current global model xµ from the server and conduct Kt,i

local steps to update to xi
µ,Kt,i

. Note in vanilla FedAvg,
Kt,i = K for any i and t. In contrast, we allow Kt,i to
be time-varying and device-dependent. The client then nor-
malizes the model update by Kt,i to avoid model biased
towards clients with more local updates. Concurrently, the
server collects the model updates from the clients. As ev-
ery client may participate in training at a different round, the
collected model update∆i

t−τt,i
may be from a historic times-

tamp, i.e. τt,i away from current time t. The server triggers
global update whenever it collects m model updates and we
denote the set of m responsive clients as St. The global up-
date is same as multistage FedGM (i.e. Lines 11-13). Note
that server optimization is concurrent with clients, i.e., the
global update happens whenever m model updates are col-
lected, regardless of whether there are still some clients con-
ducting local computation, thus ensuring there is no strag-
gler.

Autonomous multistage FedGM, i.e. Algorithm 4, will re-
cover multistage FedGM, i.e. Algorithm 3, if we set Kt,i =
K and τt,i = 0 for ∀t, i. Please note that varying Kt,i and
nonzero τt,i bring nontrivial extra complexity to the theoret-
ical analysis as can be seen in our proof.

5.2 Convergence Analysis

We state the convergence guarantee of autonomous multi-
stage FedGM as follows,

Theorem 5.1. We optimize f(x) with Algorithm 4 under as-
sumptions 1-3. Suppose the maximum delay is bounded, i.e.
τt,i ≤ τ <∞ for any i ∈ St and t ∈ {0, 1, . . . , T − 1}. Un-

der the condition ηl ≤ min

{

1
8Kt,maxL

,
√

1
120L2CητK

2
t,max

}

,

where Kt,max = maxi∈St
Kt,i. And further assume each

client is included in St with probability m
n

uniformly and
independently. With necessary abbreviation for ease of nota-
tion 5, we would have:

5We denote η̄ , 1
S

∑S−1
s=0 ηs (average server learning rate),

η̂2 , 1
S

∑S−1
s=0 η2

s , η̂3 , 1
S

∑S−1
s=0 η3

s , 1
Kt

=
1
m

∑

i∈St

1
Kt,i

,

K̄t , 1
m

∑

i∈St
Kt,i, K̂

2
t , 1

m

∑

i∈St
K2

t,i, φ1 , 1
T

∑T−1
t=0 K̄t,

Algorithm 4: Autonomous Multistage FedGM

Input: Same as Algorithm 3
1 for s ∈ {1, ..., S} do
2 for t in stage s do

3 At Each Client (Concurrently)

4 Once decided to participate in the training,
retrieve xµ from the server and its
timestamp, set xi

µ,0 = xµ.
5 Select a number of local steps Kt,i, which is

time-varying and device-dependent.
6 ∆i

µ = LocalOPT (i, ηl,Kt,i, xµ)

7 Normalize and send ∆i
µ =

∆i
µ

Kt,i

8 At Server (Concurrently)

9 Collect m local updates {∆i
t−τt,i

, i ∈ St}
returned from the clients to form set St,
where τt,i is the random delay of the client
i’s local update, i ∈ St

10 Aggregate ∆t =
1

|St|
∑

i∈St
∆i

t−τt,i

11 dt+1 = (1 − βs)∆t + βsdt
12 ht+1 = (1− νs)∆t + νsdt+1

13 Update xt+1 = xt − ηsht+1

14 end

15 end
16 return xT

Ḡ ≤ 4 (f(x0)− f∗)

SW2ηl
+Φlσ

2
l +Φgσ

2
g

Φl ,
20η2

l L
2T η̄

W2

φ1 +
4L2τ2η̂3η2

l T

mW2

φ3 +
2L2W 2

1
η̄ηlT

mW2

φ3 +
2η̄ηlT
mW2

φ3 +
2Lη̂2ηl

mW2

φ3, and Φg ,
120η2

l L
2T η̄φ2

W2

.

Corollary 5.2 (Convergence Rate). Suppose an identical
K for all t and i. By appropriately setting η̄, ηl, W1, W2,

we have the convergence rate as, O
(

1√
mKT

)

+O
(

τ2

T

)

+

O
(

K2

T

)

.

Remark 5.3. Corollary 5.2 indicates τ brings a slowdown
in convergence. Fortunately, with a sufficiently large T (e.g.

T ≥ mK5) and a manageable τ (e.g. τ ≤ T
1

4

(mK)
1

4

), au-

tonomous multistage FedGM obtains a O
(

1√
mKT

)

rate.

Note that we make an additional assumption that each client
is included in St with probability m

n
uniformly and indepen-

dently, which is necessary as the following Corollary 5.4
indicates if without such assumption, the rate has a non-
convergent O

(
σ2
g

)
term that we cannot avoid (the lower

bound is Ω
(
σ2
g

)
).

Corollary 5.4 (Convergence Rate w/o Uniform Sampling
Assumption). Suppose an identical K for all t and i. By ap-
propriately setting η̄, ηl, W1, W2, we have the convergence

φ2 , 1
T

∑T−1
t=0 K̂2

t , and φ3 , 1
T

∑T−1
t=0

1
Kt

, for ease of notation.
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Figure 1: 1(a) Training and 1(b) Testing Curves for
FedGM (ResNet on CIFAR-10). FedGM outperforms Fe-
dAvg/FedAvgM. 1(c) Training and 1(d) Testing for Au-
tonomous FedGM (ResNet on CIFAR-10).

rate as, O
(

1√
mKT

)

+ O
(

τ2

T

)

+O
(

K2

T

)

+O
(
σ2
g

)
, and

the non-vanishingO
(
σ2
g

)
is unavoidable. 6

6 Experimental Results

In this section, we present empirical evidence to ver-
ify our theoretical findings. We train ResNet (He et al.
2016) and VGG (Simonyan and Zisserman 2015) on CI-
FAR10 (Krizhevsky 2009). To simulate data heterogeneity
in CIFAR-10, we impose label imbalance across clients, i.e.
each client is allocated a proportion of the samples of each la-
bel according to a Dirichlet distribution (Hsu, Qi, and Brown
2019; Yurochkin et al. 2019). The concentration parameter
α > 0 indicates the level of non-i.i.d., with smaller α im-
plies higher heterogeneity, and α→∞ implies i.i.d. setting.
Unless specified otherwise, we have 100 clients in all exper-
iments, and the partial participation ratio is 0.05, i.e., 5 out
of 100 clients are picked in each round, non-i.i.d. is α = 0.5,
and local epoch is 3. We defer many more results and details
of hyperparameter settings to Appendix H.

6.1 Results on FedGM

Figure 1 shows the results for ResNet on CIFAR-10 with
FedGM, FedAvgM, and FedAvg. We perform grid search
over η ∈ {0.5, 1.0, 1.5, . . . , 5.0}, β ∈ {0.7, 0.9, 0.95}, and
ν ∈ {0.7, 0.9, 0.95}. We report their respective best results
in Figure 1. We observe that though FedAvgM converges
faster than FedAvg, it is only marginally better in terms of

6We informally state Corollary 5.4 due to page limit, please re-
fer to Appendix G for a formal statement.

testing. FedGM, in contrast, outperforms FedAvgM and Fe-
dAvg in both measures. Therefore, a general momentum, in-
stead of only SHB, is critical empirically. We analyze possi-
ble reasons and leave more results with VGG and different
heterogeneity levels α to Appendix H.2.

6.2 Results on Multistage FedGM

Figure 2 shows the results for ResNet on CIFAR-10 with
multistage vs. single-stage FedGM. The two black vertical
lines at round 143 and 429 mark the end of 1st/2nd stage.
For multistage FedGM, (η1 = 2.0, η2 = 1.0, η3 = 0.5), the
β also changes according to Eq. 3. From Figure 2, we ob-
serve multistage FedGM is better than single-stage FedGM,
no matter what constant η it takes. Specifically, at first stage,
η1 = 2.0 makes the training curve fluctuate dramatically, but
later into 2nd/3rd stage, the training stabilizes with smaller
η2 and η3. Multistage FedGM achieves a balance between
early exploration and late exploitation. Multistage is also su-
perior to its counterpart in testing. We leave more experi-
ments to Appendix H.3.
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Figure 2: 2(a) Training and 2(b) Testing Curves for Multi-
stage FedGM vs. Single-stage FedGM.

6.3 Results on Autonomous FedGM

Figure 1 shows the results for ResNet on CIFAR-10 with
Autonomous FedGM (& FedAvg). Please refer to Appendix
H.1 for detailed settings. We perform a grid search as in Sec-
tion 6.1. We report their respective best curves. We plot an
ideal FedGM (i.e. synchronous and identical local epochs)
as reference line. We could observe Autonomous FedGM
outperforms Autonomous FedAvg with system heterogene-
ity. Though Autonomous FedGM suffers a slowdown com-
pared to the ideal FedGM, it is within a small margin, which



supports our theory in Corollary 5.2 and validates the ef-
fectiveness of Autonomous FedGM. We leave more exper-
iments to Appendix H.4.

7 Conclusion

This paper systematically studied how the server momentum
could help alleviate client drift that arises from both data
heterogeneity and system heterogeneity. We demonstrated
the critical role of momentum schemes and proper hyperpa-
rameter schedule by providing a rigorous convergence anal-
ysis and extensive empirical evidence, which pave a way for
more widely and disciplined use of server momentum in the
federated learning research community.
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Appendix

A Organization of Appendix

Appendix is organized as follows. In Section B, we discuss the omitted details of server momentum with system heterogeneity
from Section 5. In Section C, we provide the discussion of related works. In Section D, we show the proof of Theorem 4.1,
Corollary 4.2, and Corollary 4.4. In Section E, We provide the proof of Theorem 4.6 and Corollary 4.7. In Section F, we provide
the proof of Theorem 5.1 and Corollary 5.2. In Section G, we provide the proof of Corollary 5.4. Note that we use a 0-indexing
for T and S in most proofs, i.e. the rounds (stages) are denoted as {0, . . . , T − 1} ({0, . . . , S − 1}), which is equivalent to
the 1-indexing in main text, i.e. {1, . . . , T } ({1, . . . , S}). Finally, in Section H, we provide experimental settings and extra
experimental results that are omitted from main text.

B Autonomous Multistage FedGM

In this section, we discuss the omitted details of server momentum with system heterogeneity from Section 5.

B.1 Ubiquitous System Heterogeneity

For a simplified abstraction of real world settings, most FL algorithms make the assumption that, all clients initialize with the
same global model and they conduct identical number of local updates at any given round.

More formally, we could observe from LocalOPT (Algorithm 2) that the following assumptions have been made, (a) Homo-
geneous Local Updates all participating clients would do local gradient descent for K steps; (b) Uniform Client Participation
each client would participate in a given communication round uniformly according to a given distribution that is independent
across rounds; (c) Synchronous Local Clients all participating clients always initialize at xt, i.e., the global model at current
timestamp.

Though these three assumptions have been adopted in most existing works (McMahan et al. 2017; Hsu, Qi, and Brown 2019;
Li et al. 2020a; Karimireddy et al. 2020; Reddi et al. 2020; Wang, Lin, and Chen 2022; Hu, Wu, and Huang 2023), each of
these assumptions rarely holds in reality. Due to unavoidable heterogeneous client capability, and unpredictable availability,
enforcing identical local epochs and synchrony would incur straggler effect and unnecessary energy waste (Kairouz et al. 2021).
Therefore, realistic FL system is more economical to allow different local epochs and asynchronous aggregation.

When studying client heterogeneity and the resulting client drift, most works focus explicitly on data heterogeneity (Li
et al. 2020b; Yang, Fang, and Liu 2021), while ignoring the equally ubiquitous system heterogeneity, which casts doubt on the
applicability of the corresponding algorithms in practice.

B.2 Autonomous Multistage FedGM

In light of the limitations of existing works, we aim to propose a general framework that enables all three features, i.e. hetero-
geneous local computing, asynchronous aggregation, and flexible client participation, which is formalized in Algorithm
4.

Specifically, in Autonomous Multistage FedGM, the client decides when to participate in the training, and idling between
rounds or even completely unavailable are both allowed. Once it decides to participate at round t, it retrieves current global
model xµ from the server and initializes xi

µ,0 = xµ locally, and conduct Kt,i local steps to update from xi
µ,0 to xi

µ,Kt,i
. Note in

vanilla FedAvg, Kt,i = K for any i and t. In contrast, we allow Kt,i to be time-varying and device-dependent. The client then

normalizes the model update by Kt,i, i.e. ∆i
µ =

xi
µ,0−xi

µ,Kt,i

Kt,i
, to avoid model biased towards clients with more local updates.

Concurrently, the server collects the model updates from the clients. As every client may participate in training at a different
round, the collected model update ∆i

t−τt,i
may be from a historic timestamp, i.e. τt,i away from current time t. If we set the

random delay τt,i = 0, it would be ordinary synchronous aggregation. The server triggers global update whenever it collects m
model updates and we denote the set of m responsive clients as St. The global update is same as multistage FedGM (i.e. Lines
11-13). Note that server optimization is concurrent with clients, i.e., the global update happens whenever m model updates are
collected, regardless of whether there are still some clients conducting local computation, thus ensuring there is no straggler.

Autonomous multistage FedGM will recover multistage FedGM, i.e. Algorithm 3, if we set Kt,i = K and τt,i = 0 for ∀t, i.
Please note that varying Kt,i and nonzero τt,i bring nontrivial extra complexity to the theoretical analysis as can be seen in our
proof.

C Related Work

C.1 Tackling Client Heterogeneity and Client Drift in FedAvg

Deep learning models have been widely applied in many different domains, e.g. (Mnih et al. 2013; He et al. 2016; Devlin et al.
2019; Hamilton, Ying, and Leskovec 2017; Cheng et al. 2016; Suo et al. 2019; Xun et al. 2020; Wu et al. 2023d), mostly in
centralized environment. Due to privacy concerns and regulatory requirements (European Commission 2016; BUKATY 2019),
Federated Averaging (FedAvg) (McMahan et al. 2017) has been applied to avoid data transmission in collaborative training of



deep learning models in a wide range of settings (Li et al. 2020a; Rothchild et al. 2020; Wang et al. 2020; Fallah, Mokhtari, and
Ozdaglar 2020; Li, He, and Song 2021; Bao et al. 2023; Wu et al. 2023b,c).

Client heterogeneity and its resulting client drift is known to destabilize FedAvg convergence (Zhao et al. 2018; Karimireddy
et al. 2020). FedProx (Li et al. 2020a) proposes to regularize the difference against global model in local objective. SCAFFOLD

(Karimireddy et al. 2020) leverages variance reduction technique to reduce client drift and achieves the best knownO
(

1√
nKT

)

rate in full participation setting. However, SCAFFOLD is not stateless which restricts its application in cross-device FL. (Reddi
et al. 2020; Wang, Lin, and Chen 2022) propose a family of federated adaptive optimizers e.g. FedADAM, FedADAGRAD,
and FedAMS that are natural extensions from non-FL adaptive optimizers to FL settings. Recent works propose algorithms
to alleviate client heterogeneity in FL bilevel optimization problems, e.g. minimax (Wu et al. 2023c) or conditional stochastic
optimization (Wu et al. 2023b). The most relevant line of research to this paper is on server-side momentum. Server-side
momentum is first empirically studied in (Hsu, Qi, and Brown 2019), where FedAvgM is observed to outperform FedAvg in
non-i.i.d. settings by a significant margin. Recent explorations include (Rothchild et al. 2020) that studies the interplay between
server momentum and compression, and (Khanduri et al. 2021) which studies a two-sided momentum scheme that allows both
server momentum and client momentum. However, all existing works have the following limitations that our paper aims to
address, (a) they do not provide a unified analysis for a family of momentum schemes; (b) they do not incorporate any realistic
hyperparameter schedulers; (c) they ignore an important source of client heterogeneity, i.e. system heterogeneity.

C.2 Hyperparameter Scheduling

Adaptively adjusting hyperparameters throughout the training is key to the success of deep model training, but most of such
explorations are in non-FL context. For example, previous works (He, Liu, and Tao 2019), (Sun et al. 2022), and (Sun, Sinha, and
Zhang 2023) reveal the connection between hyperparameters and generalization capacity of optimizers. (Krizhevsky, Sutskever,
and Hinton 2012) and (He et al. 2016) propose to decay learning rate η whenever the loss saturates; (Goyal et al. 2017)
popularizes the heuristic of warmup to increase η from a small value to a very large value in the first few iterations; (Smith
2017) proposes to adopt a cyclic learning rate schedule between warmup and decay phases. Apart from learning rate, adaptively
scheduling other hyperparameters (e.g. momentum factor and batch size) is also shown to be very effective in many settings.
For example, (Sutskever et al. 2013) shows a slowly increasing schedule for the momentum factor is crucial; (Smith and Le
2018; Smith, Kindermans, and Le 2018) propose a procedure to enable large batch training where η and momentum factor β
are increasing, and batch size B is scaled B ∝ η

1−β
. From a theoretical point of view, in non-FL context, (Ge et al. 2019a) and

(Wang, Magnússon, and Johansson 2021) show the multistage learning rate scheduler achieves a near-optimal convergence rate

of O
(

log T
T

)

rate (faster than polynomial decay), in both convex and non-convex functions. (Sun et al. 2021) and (Sun et al.

2023) show the convergence of multistage scheduler for momentum schemes. However, to our best knowledge, there is no prior
work studying multistage hyperparameter scheduler (both learning rate and momentum factor) in FL settings.

C.3 Flexible Participation and Asynchronous Aggregation

The existing works that are dedicated to studying system heterogeneity can be mainly categorized into the following groups,

• Heterogeneous local computing but synchronous aggregation. (Wang et al. 2020) is probably the first work to show hetero-
geneous number of local updates results in the global model converges to a mismatched optimum which can be arbitrarily
away from the true optimum and proposes an effective remedy FedNova to correct the mismatch. (Basu et al. 2019) considers
how model compression works with different number of local updates 7. (Avdiukhin and Kasiviswanathan 2021) focuses on a
similar setting and studies the upper bound of distances between two consecutive communications to reduce communication
times as much as possible. Their theoretical analysis relies on bounded gradient assumption.

• Asynchronous aggregation. This line of research is most closely related to our proposed Autonomous Multistage FedGM.
However, though asynchrony has been a decade-long topic in traditional distributed computing (Zhang, Choromańska, and
LeCun 2014; Lian et al. 2015; Zheng et al. 2017), it has received very limited attention in federated learning. (Xie, Koyejo, and
Gupta 2019) proposes FedAsync in which the server immediately updates the global model whenever it receives a single local
model. Their theoretical analysis only applies to convex objective function which is not applicable to deep learning. Moreover,
this proposal has negative implication in privacy, as it no longer hides one single update in an aggregate, which is one of the
most important points to use FL in the first place. In light of this, (Nguyen et al. 2021) proposes FedBuff, in which a global
update is triggered when the server receives m local updates, where m is a pre-specified hyperparameter. By maintaining a
size m buffer, FedBuff could secure the identity of each local update and is empirically faster than FedAsync. However, it
does not consider the heterogeneous local computing and does not provide a convergence rate that shows the dependency on
m. (Yang et al. 2021) proposes anarchic FL in which the clients are free to determine how much local computation to conduct

7Though the authors call the proposed model ’asynchronous’, the asynchrony refers to that updates occur after different number of local
iterations but the local iterations are synchronous with respect to the global clock. However, ’asynchronous’ in our context refers to local
iterations are asynchronous with respect to the global clock, which is more challenging to analyze.



and the asynchronous communication is in the same fashion as FedBuff. However, (Yang et al. 2021) only considers the case
of vanilla FedAvg, while our works subsumes anarchic FL as a special case.

There are many other works that enable flexible participation scheme but still synchronous aggregation, e.g. (Yan et al. 2020;
Gu et al. 2021; Wang and Ji 2022; Nishio and Yonetani 2018; Chen, Horváth, and Richtárik 2020; Jee Cho, Wang, and Joshi
2022; Goetz et al. 2019; Ribero and Vikalo 2020). This line of research is less related to our proposed research.

D Proof of Theorem 4.1, Corollary 4.2, and Corollary 4.4

Proof of Multistage FedGM with Full Participation. Recall the formulation of General Momentum:

dt+1 = (1− βt)∆t + βtdt

xt+1 = xt − ηt [(1− νt)∆t + νtdt+1]

Denote the update sequence yt , xt+1 − xt. The updating rule is different from FedAvg in that yt 6= −ηt∆t. The proof hinges
on the construction of an auxiliary sequence {zt}Tt=0, such that zt+1 − zt = −ηt∆t. This {zt}Tt=0 is more like vanilla FedAvg
iterates and thus easier to deal with. We then study the property of {zt}Tt=0 and its connection to {xt}Tt=0. {zt}Tt=0 is devised
as follows:

zt = xt −
ηtβtνt

1− βt

dt (4)

where d0 = 0.
We now verify zt+1 − zt = −ηt∆t,

zt+1 − zt = xt+1 −
ηt+1βt+1νt+1

1− βt+1
dt+1 − xt +

ηtβtνt

1− βt

dt

=
(i)
−ηtyt −W1(dt+1 − dt)

=
(ii)
−ηt ((1− νt)∆t + νtdt+1)−W1 ((1− βt)∆t + βtdt − dt)

= −ηt (1− νt)∆t − ηtβtνt∆t − ηtνt (dt+1 − βtdt)

= −ηt (1− νt)∆t − ηtβtνt∆t − ηtνt (1− βt)∆t = −ηt∆t

where (i) holds by the assumption ηtβtνt
1−βt

is a constant W1, (ii) holds by plugging in the updating rule for dt and xt.
Since f is L-smooth, taking conditional expectation with respect to all randomness prior to step t, we have

E [f(zt+1)] ≤ f(zt) + E [〈∇f(zt), zt+1 − zt〉] +
L

2
E

[

‖zt+1 − zt‖2
]

≤ f(zt) + E [〈∇f(zt),−ηt∆t〉] +
L

2
η2tE

[

‖∆t‖2
]

≤ f(zt) + E [〈√ηt (∇f(zt)−∇f(xt)) ,−
√
ηt∆t〉]

︸ ︷︷ ︸

A1

+E [〈∇f(xt),−ηt∆t〉]
︸ ︷︷ ︸

A2

+
L

2
η2tE

[

‖∆t‖2
]

︸ ︷︷ ︸

A3

Bounding A1:
A1 = E [〈√ηt (∇f(zt)−∇f(xt)) ,−

√
ηt∆t〉]

≤
(i)

E [‖√ηt (∇f(zt)−∇f(xt))‖ · ‖−
√
ηt∆t‖]

≤
(ii)

1

2
η3tL

2

(
βtνt

1− βt

)2

E

[

‖dt‖2
]

+
1

2
ηtE

[

‖∆t‖2
]

where (i) holds by applying Cauchy-Schwarz inequality, and (ii) follows by invoking the definition of zt, Young’s inequality
and f is L-smooth.

Bounding A2:

A2 = E [〈∇f(xt),−ηt∆t〉]
= ηtE [〈∇f(xt), ηlK∇f(xt)−∆t − ηlK∇f(xt)〉]

=
(i)
−ηtηlKE

[

‖∇f(xt)‖2
]

+ ηtE

[〈

∇f(xt), ηlK∇f(xt)−
1

n

n∑

i=1

K−1∑

k=0

ηlg
i
t,k

〉]

where (i) follows from the definition ∆t =
1
n

∑n
i=1

∑K−1
k=0 ηlg

i
t,k.



where we further bound ηtE
[〈

∇f(xt), ηlK∇f(xt)− 1
n

∑n
i=1

∑K−1
k=0 ηlg

i
t,k

〉]

,

ηtE

[〈

∇f(xt), ηlK∇f(xt)−
1

n

n∑

i=1

K−1∑

k=0

ηlg
i
t,k

〉]

=
(i)

ηtE

[〈

∇f(xt), ηlK∇f(xt)−
1

n

n∑

i=1

K−1∑

k=0

ηl∇fi(xi
t,k)

〉]

≤ ηtE

[〈
√

ηlK∇f(xt),

√
ηlK

Kn

n∑

i=1

K−1∑

k=0

(
∇fi(xt)−∇fi(xi

t,k)
)

〉]

≤
(ii)

ηtηlK

2
E

[

‖∇f(xt)‖2
]

+
ηtηlK

2K2n2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

(
∇fi(xt)−∇fi(xi

t,k)
)

∥
∥
∥
∥
∥

2




−ηt

2
E





∥
∥
∥
∥
∥

√

ηlK(∇f(xt)−
1

Kn

n∑

i=1

K−1∑

k=0

(
∇fi(xt)−∇fi(xi

t,k))
)

∥
∥
∥
∥
∥

2


 =
ηtηlK

2
E

[

‖∇f(xt)‖2
]

+
ηtηl

2Kn2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

(
∇fi(xt)−∇fi(xi

t,k)
)

∥
∥
∥
∥
∥

2


− ηtηl

2Kn2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2




(5)

where (i) holds as we take conditional expectation with respect to all randomness prior to step t and ∇f(xt) =
1
n

∑n
i=1∇fi(xt) by definition, (ii) holds as 〈a, b〉 = 1

2 ‖a‖
2
+ 1

2 ‖b‖
2 − 1

2 ‖a− b‖2.
We further bound Equation 5,

≤
(i)

ηtηlK

2
E

[

‖∇f(xt)‖2
]

+
ηtηl

2n

n∑

i=1

K−1∑

k=0

E

[∥
∥∇fi(xt)−∇fi(xi

t,k)
∥
∥
2
]

− ηtηl

2Kn2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2




≤
(ii)

ηtηlK

2
E

[

‖∇f(xt)‖2
]

+
ηtηlL

2

2n

n∑

i=1

K−1∑

k=0

E

[∥
∥xt − xi

t,k

∥
∥
2
]

− ηtηl

2Kn2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2




where (i) holds as ‖∑n
i=1 xi‖2 ≤ n

∑n
i=1 ‖xi‖2, and (ii) holds due to L-smoothness of fi.

When ηl ≤ 1
8KL

, for any k, we have the following from (Reddi et al. 2020),

1

n

n∑

i=1

E

[∥
∥xt − xi

t,k

∥
∥
2
]

≤ 5Kη2l
(
σ2
l + 6Kσ2

g

)
+ 30K2η2l E

[

‖∇f(xt)‖2
]

Thus, we have the following,

ηtηlK

2
E
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‖∇f(xt)‖2
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ηtηlL

2

2n

n∑
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E
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∥
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∥
∥
∥
∥
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∇fi(xi
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∥
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∥
∥
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



≤ ηtηlK
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E

[

‖∇f(xt)‖2
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− ηtηl

2Kn2
E




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∥
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∥

n∑
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K−1∑
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∇fi(xi
t,k)

∥
∥
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2




+
ηtηlL

2K

2
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5Kη2l
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σ2
l + 6Kσ2

g
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+ 30K2η2l E

[

‖∇f(xt)‖2
])

≤
(
ηtηlK

2
+ 15ηtη

3
l K

3L2

)

E

[

‖∇f(xt)‖2
]

− ηtηl

2Kn2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2


+
5

2
ηtη

3
l L

2K2
(
σ2
l + 6Kσ2

g

)

≤
(i)

47

64
ηtηlKE

[

‖∇f(xt)‖2
]

− ηtηl

2Kn2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2


+
5

2
ηtη

3
l L

2K2
(
σ2
l + 6Kσ2

g

)



where (i) holds as ηl ≤ 1
8KL

.
Merging all pieces together, we have the bound for A2,

A2 = −ηtηlKE

[

‖∇f(xt)‖2
]

+ ηtE

[〈

∇f(xt), ηlK∇f(xt)−
1

n

n∑

i=1

K−1∑

k=0

ηlg
i
t,k

〉]

≤ −17

64
ηtηlKE

[

‖∇f(xt)‖2
]

+
5

2
ηtη

3
l L

2K2
(
σ2
l + 6Kσ2

g

)
− ηtηl

2Kn2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2




Bounding E

[

‖∆t‖2
]

:

E

[

‖∆t‖2
]

= E





∥
∥
∥
∥
∥

ηl

n

n∑

i=1

K−1∑

k=0

git,k

∥
∥
∥
∥
∥

2




=
(i)

E





∥
∥
∥
∥
∥

ηl

n

n∑

i=1

K−1∑

k=0

(
git,k −∇fi(xi

t,k)
)

∥
∥
∥
∥
∥

2


+ E





∥
∥
∥
∥
∥

ηl

n

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2




=
(ii)

η2l
n2

n∑

i=1

K−1∑

k=0

E

[∥
∥git,k −∇fi(xi

t,k)
∥
∥
2
]

+ E





∥
∥
∥
∥
∥

ηl

n

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2




≤
(iii)

Kη2l
n

σ2
l +

η2l
n2

E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2




where (i) and (ii) hold as E
[

‖∑n
i=1 xi‖2

]

=
∑n

i=1 E

[

‖xi‖2
]

when E [xi] = 0, and we know E

[

git,k −∇fi(xi
t,k)
]

= 0.

(iii) holds due to bounded local variance assumption.

Bounding
∑T−1

t=0 E

[

‖dt‖2
]

:

It is straightforward to verify:

dt =

t∑

p=0

at,p∆p, where at,p = (1− βp)

t∏

q=p+1

βq

With dt =
∑t

p=0 at,p∆p, we could get,

E

[

‖dt‖2
]

= E





∥
∥
∥
∥
∥

t∑

p=0

at,p∆p

∥
∥
∥
∥
∥

2




=

d∑

e=1

E





(
t∑

p=0

at,p∆p,e

)2


 ≤
(i)

d∑

e=1

E

[(
t∑

p=0

at,p

)

·
(

t∑

p=0

at,p∆
2
p,e

)]

≤
(ii)

(

1−
t∏

q=0

βq

)
t∑

p=0

at,pE
[

‖∆p‖2
]

≤
(iii)

Kη2l
n

σ2
l +

η2l
n2

t∑

p=0

at,pE





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
p,k)

∥
∥
∥
∥
∥

2




where ∆p,e denotes the e-th element of vector ∆p. (i) holds due to Cauchy–Schwarz inequality, (ii) holds as
∑t

p=0 at,p =

1−
∏t

q=1 βq, (iii) holds by plugging in the bound for E
[

‖∆t‖2
]

and βq < 1.

We sum over t ∈ {0, ..., T − 1},



T−1∑

t=0

E

[

‖dt‖2
]

≤ TKη2l
n

σ2
l +

η2l
n2

T−1∑

t=0

t∑

p=0

at,pE





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
p,k)

∥
∥
∥
∥
∥

2




=
TKη2l

n
σ2
l +

η2l
n2

T−1∑

p=0

(
T−1∑

t=p

at,p

)

E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
p,k)

∥
∥
∥
∥
∥

2




Since {βt}T−1
t=0 is a non-decreasing sequence, we could verify

∑T−1
t=p at,p ≤ 1−β0

1−βS
= Cβ .

T−1∑

t=0

E

[

‖dt‖2
]

≤ TKη2l
n

σ2
l +

η2l
n2

T−1∑

p=0

(
T−1∑

t=p

at,p

)

E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
p,k)

∥
∥
∥
∥
∥

2




≤ TKη2l
n

σ2
l +

η2l
n2

Cβ

T−1∑

t=0

E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2




Bounding A3:

A3 =
L

2
η2tE

[

‖∆t‖2
]

≤
(i)

L

2
η2t




Kη2l
n

σ2
l +

η2l
n2

E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2








≤ LKη2t η
2
l

2n
σ2
l +

Lη2t η
2
l

2n2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2




where (i) holds by plugging in the bound for E
[

‖∆t‖2
]

.

Merging A1, A2, A3 together,

E [f(zt+1)]− f(zt) ≤ E [〈√ηt (∇f(zt)−∇f(xt)) ,−
√
ηt∆t〉]

︸ ︷︷ ︸

A1

+E [〈∇f(xt),−ηt∆t〉]
︸ ︷︷ ︸

A2

+
L

2
η2tE

[

‖∆t‖2
]

︸ ︷︷ ︸

A3

≤ 1

2
η3tL

2

(
βtνt

1− βt

)2

E

[

‖dt‖2
]

+
1

2
ηt




Kη2l
n

σ2
l +

η2l
n2

E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2








−17

64
ηtηlKE

[

‖∇f(xt)‖2
]

+
5

2
ηtη

3
l L

2K2
(
σ2
l + 6Kσ2

g

)
− ηtηl

2Kn2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2




+
LKη2t η

2
l

2n
σ2
l +

Lη2t η
2
l

2n2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2




Reorganizing terms, we could get,

17

64
ηtηlKE

[

‖∇f(xt)‖2
]

≤ − (E[f(zt+1)]− f(zt)) +
1

2
η3tL

2

(
βtνt

1− βt

)2

E

[

‖dt‖2
]

+
1

2
ηt




Kη2l
n

σ2
l +

η2l
n2

E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2






+
5

2
ηtη

3
l L

2K2
(
σ2
l + 6Kσ2

g

)

− ηtηl

2Kn2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2


+
LKη2t η

2
l

2n
σ2
l +

Lη2t η
2
l

2n2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2




that is,



E

[

‖∇f(xt)‖2
]

≤ −64

17

E [f(zt+1)]− f(zt)

ηtηlK
+

32

17

L2

ηlK
W 2

1 E

[

‖dt‖2
]

+
32

17

ηl

n
σ2
l +

32

17

ηl

Kn2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2


+
160

17
η2l L

2K
(
σ2
l + 6Kσ2

g

)

−32

17

1

K2n2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2


+
32

17

Lηtηl

n
σ2
l +

32

17

Lηtηl

Kn2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2




Sum over all S stages and take average, we get,

Ḡ ,
1

S

S∑

s=1

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

E

[

‖∇f(xt)‖2
]

≤
(i)

64

17

f(z0)− E[f(zT )]

SW2ηlK
+

32

17

L2W 2
1 η̄

W2ηlK

T−1∑

t=0

E

[

‖dt‖2
]

+
32

17

ηl

n
σ2
l

+
32

17

ηlη̄

Kn2W2

T−1∑

t=0

E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2


+
160

17
η2l L

2K
(
σ2
l + 6Kσ2

g

)

−32

17

ηS

SW2K2n2

T−1∑

t=0

E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2


+
32

17

Lη̄ηl

n
σ2
l +

32

17

Lη0η̄ηl

W2Kn2

T−1∑

t=0

E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2




≤
(ii)

64

17

f(z0)− E [f(zT )]

SW2ηlK
+

TKη2l
n

σ2
l

32

17

L2W 2
1 η̄

W2ηlK
+

32

17

ηl

n
σ2
l +

160

17
η2l L

2K
(
σ2
l + 6Kσ2

g

)
+

32

17

Lη̄ηl

n
σ2
l

+

(
η2l
n2

Cβ

32

17

L2W 2
1 η̄

W2ηlK
+

32

17

ηlη̄

Kn2W2
− 32

17

ηS

SW2K2n2
+

32

17

Lη0η̄ηl

W2Kn2

) T−1∑

t=0

E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2




where η̄ = 1
S

∑S
s=1 ηs. Due to ηt is stagewise, i.e. ηt = ηs when t ∈ {T0 + · · ·+ Ts−1, . . . , T0 + · · · + Ts − 1}, and ηs is

decaying, i.e. ηS ≤ ηs ≤ η0, for any stage s, thus we have the following,

1

S

S∑

s=1

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

32

17

L2W 2
1

ηlK
E

[

‖dt‖2
]

=
32

17

L2W 2
1

ηlK

1

S

S∑

s=1

ηs

Tsηs

T0+···+Ts−1∑

t=T0+···+Ts−1

E

[

‖dt‖2
]

=
32

17

L2W 2
1

ηlK

1

SW2

S∑

s=1

ηs

T0+···+Ts−1∑

t=T0+···+Ts−1

E

[

‖dt‖2
]

≤ 32

17

L2W 2
1 η̄

ηlKW2

S∑

s=1

T0+···+Ts−1∑

t=T0+···+Ts−1

E

[

‖dt‖2
]

=
32

17

L2W 2
1 η̄

ηlKW2

T−1∑

t=0

E

[

‖dt‖2
]

Similarly, we have,

1

S

S∑

s=1

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

32

17

Lηtηl

Kn2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2


 ≤ 32

17

Lη0η̄ηl

W2Kn2

T−1∑

t=0

E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2




and, we also have,

1

S

S∑

s=1

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

32

17

Lηtηl

n
σ2
l =

32

17

Lηl

n
σ2
l

1

S

S∑

s=1

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

ηt =
32

17

Lηlη̄

n
σ2
l

Thus, inequality (i) holds. (ii) holds by plugging into the bounds for
∑T−1

t=0 E

[

‖dt‖2
]

.



when the following two conditions hold,

ηl ≤
1

KSCη (Lη̄ + 1 + L2W 2
1Cη)

where Cη = η0

ηS
.

we could verify the coefficient of
∑T−1

t=0 E

[∥
∥
∥
∑n

i=1

∑K−1
k=0 ∇fi(xi

t,k)
∥
∥
∥

2
]

is non-positive, by plugging in the learning rate

constraints and using Cβ ≤ Cη.

η2l
n2

Cβ

32

17

L2W 2
1 η̄

W2ηlK
+

32

17

ηlη̄

Kn2W2
− 32

17

ηS

SW2K2n2
+

32

17

Lη̂2ηl

W2Kn2
≤ 0

which results in,

Ḡ ,
1

S

S∑

s=1

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

E

[

‖∇f(xt)‖2
]

≤ 64

17

f(z0)− E [f(zT )]

SW2ηlK
+

TKη2l
n

σ2
l

32

17

L2W 2
1 η̄

W2ηlK
+

32

17

ηl

n
σ2
l +

160

17
η2l L

2K
(
σ2
l + 6Kσ2

g

)
+

32

17

Lη̄ηl

n
σ2
l

≤
(i)

64

17

f(x0)− f∗

SW2ηlK
+

(
32

17

L2W 2
1 T η̄ηl

nW2
+

32

17

ηl

n
+

160

17
η2l L

2K +
32

17

Lη̄ηl

n

)

σ2
l +

960

17
η2l L

2K2σ2
g

where (i) holds as f is assumed to have minimum f∗.

Suppose S = 1, i.e. the typical constant hyperparameter regime, the total number of rounds are T , η̄ = η0 = Θ
(√

nK
)

and

ηl = Θ
(

1√
TK

)

, W2 = Θ
(

T
√
nK
)

in this case. SupposeW 2
1 = O

(√
nK
)

. Considering in FedAvg, β = 0 and consequently

W1 = 0, thus, the condition W 2
1 = O

(√
nK
)

naturally holds. We have the bound as,

Ḡ ,
1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

E

[

‖∇f(xt)‖2
]

≤ O
(

1√
TKn

)

(f(x0)− f∗) +

(

O
(

1√
TKn

)

+O
(

1

TK

)

+O
(

1√
TKn

))

σ2
l +O

(
1

T

)

σ2
g

when T is sufficiently large, i.e. T ≥ Kn, the dominant term is O
(

1√
TKn

)

.

Suppose S > 1, i.e. the multistage regime, the total number of rounds are T , η̄ = Θ
(√

nK
)

, ηl = Θ
(

1√
TK

)

, W2 =

Θ
(

T
√
nK
S

)

, i.e. T η̄ is equally divided into S stages. Suppose W 2
1 = O

(√
nK
S

)

, we have the bound as,

Ḡ ,
1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

E

[

‖∇f(xt)‖2
]

≤ O
(

1√
TKn

)

(f(x0)− f∗) +

(

O
(

1√
TKn

)

+O
(

1

TK

)

+O
(

1√
TKn

))

σ2
l +O

(
1

T

)

σ2
g

The dominant term is O
(

1√
TKn

)

.

E Proof of Theorem 4.6 and Corollary 4.7

Proof of Multistage GM with Partial Participation. Recall the formulation of General Momentum:

dt+1 = (1 − βt)∆t + βtdt

xt+1 = xt − ηt[(1− νt)∆t + νtdt+1]

We first show ∆t is an unbiased estimator of a virtual average ∆′
t ,

1
n

∑n
i=1 ∆

i
t,



E [∆t] = E

[

1

m

∑

i∈St

∆i
t

]

= E

[

1

m

n∑

i=1

1 (i ∈ St)∆i
t

]

=
1

m
E

[
n∑

i=1

P {i ∈ St}∆i
t

]

=
(i)

1

n

n∑

i=1

∆i
t = ∆′

t

where (i) follows from P {i ∈ St} = m
n

.

We study the following Lyapunov sequence {zt}T−1
t=0 , which is devised as follows:

zt = xt −
ηtβtνt

1− βt

dt (6)

where d0 = 0.

We now verify zt+1 − zt = −ηt∆t,

zt+1 − zt = xt+1 −
ηt+1βt+1νt+1

1− βt+1
dt+1 − xt +

ηtβtνt

1− βt

dt

= −ηtyt −W1(dt+1 − dt)

= −ηt((1 − νt)∆t + νtdt+1)−W1((1 − βt)∆t + βtdt − dt)

= −ηt(1− νt)∆t − ηtβtνt∆t − ηtνt(dt+1 − βtdt)

= −ηt(1− νt)∆t − ηtβtνt∆t − ηtνt(1− βt)∆t = −ηt∆t

Since f is L-smooth, taking conditional expectation with respect to all randomness prior to step t, we have

E [f(zt+1)] ≤ f(zt) + E [〈∇f(zt), zt+1 − zt〉] +
L

2
E

[

‖zt+1 − zt‖2
]

≤ f(zt) + E [〈∇f(zt),−ηt∆t〉] +
L

2
η2tE

[

‖∆t‖2
]

≤ f(zt) + E [〈√ηt (∇f(zt)−∇f(xt)) ,−
√
ηt∆t〉]

︸ ︷︷ ︸

A1

+E [〈∇f(xt),−ηt∆t〉]
︸ ︷︷ ︸

A2

+
L

2
η2tE

[

‖∆t‖2
]

︸ ︷︷ ︸

A3

Bounding A1:

A1 = E [〈√ηt (∇f(zt)−∇f(xt)) ,−
√
ηt∆t〉]

≤
(i)

E [‖√ηt (∇f(zt)−∇f(xt))‖ · ‖−
√
ηt∆t‖]

≤
(ii)

1

2
η3tL

2

(
βtνt

1− βt

)2

E

[

‖dt‖2
]

+
1

2
ηtE

[

‖∆t‖2
]

(7)

where (i) holds by applying Cauchy-Schwarz inequality, and (ii) follows from Young’s inequality and f is L-smooth.

Bounding A2:

A2 = E [〈∇f(xt),−ηt∆t〉]
= ηtE [〈∇f (xt) , ηlK∇f (xt)−∆t − ηlK∇f (xt)〉]

= −ηtηlKE

[

‖∇f (xt)‖2
]

+ ηtE [〈∇f (xt) , ηlK∇f (xt)−∆t〉]



where we further bound ηtE [〈∇f (xt) , ηlK∇f (xt)−∆t〉],

ηtE [〈∇f (xt) , ηlK∇f (xt)−∆t〉]

=
(i)

ηtE [〈∇f (xt) , ηlK∇f (xt)−∆′
t〉] = ηtE

[〈

∇f (xt) , ηlK∇f (xt)−
1

n

n∑

i=1

K−1∑

k=0

ηlg
i
t,k

〉]

=
(ii)

ηtE

[〈

∇f (xt) , ηlK∇f (xt)−
1

n

n∑

i=1

K−1∑

k=0

ηl∇fi(xi
t,k)

〉]

=
(iii)

ηtE

[〈

∇f (xt) ,
ηl

n

n∑

i=1

K−1∑

k=0

(
∇fi(xt)−∇fi(xi

t,k)
)

〉]

= ηt

〈
√

ηlK∇f(xt),

√
ηlK

Kn
E

[
n∑

i=1

K−1∑

k=0

(
∇fi(xt)−∇fi(xi

t,k)
)

]〉

=
(iv)

ηtηlK

2
E

[

‖∇f(xt)‖2
]

+
ηtηlK

2K2n2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

(
∇fi(xt)−∇fi(xi

t,k)
)

∥
∥
∥
∥
∥

2




−ηt

2
E





∥
∥
∥
∥
∥

√

ηlK

(

∇f(xt)−
1

Kn

n∑

i=1

K−1∑

k=0

(
∇fi(xt)−∇fi(xi

t,k)
)

)∥
∥
∥
∥
∥

2




where (i) holds as ∆t is an unbiased estimator of ∆′
t, (ii) holds as we take conditional expectation with respect to all

randomness prior to step t. (iii) holds due to the following equality and the definition of ∇f(xt) = 1
n

∑n
i=1∇fi(xt). (iv)

holds as 〈a, b〉 = 1
2 ‖a‖

2
+ 1

2 ‖b‖
2 − 1

2 ‖a− b‖2.

We further bound the above terms as,

=
ηtηlK

2
E

[

‖∇f(xt)‖2
]

+
ηtηl

2Kn2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

(
∇fi(xt)−∇fi(xi

t,k)
)

∥
∥
∥
∥
∥

2


− ηtηl

2Kn2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2




≤
(i)

ηtηlK

2
E

[

‖∇f(xt)‖2
]

− ηtηl

2Kn2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2


+
ηtηlL

2

2Kn2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

(
xt − xi

t,k

)

∥
∥
∥
∥
∥

2




≤
(ii)

ηtηlK

2
E

[

‖∇f(xt)‖2
]

− ηtηl

2Kn2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2


+
ηtηlL

2

2n

n∑

i=1

K−1∑

k=0

E

[∥
∥xt − xi

t,k

∥
∥
2
]

where (i) holds due to L-smoothness of fi, (ii) holds as ‖∑n
i=1 xi‖2 ≤ n

∑n
i=1 ‖xi‖2.

when ηl ≤ 1
8KL

, we have the following bound,

E

[∥
∥xt − xi

t,k

∥
∥
2
]

≤ 5Kη2l
(
σ2
l + 6Kσ2

g

)
+ 30K2η2l ‖∇f(xt)‖2

Plug in the above bound, we would have,



ηtηlK

2
E

[

‖∇f(xt)‖2
]

− ηtηl

2Kn2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2


+
ηtηlL

2

2n

n∑

i=1

K−1∑

k=0

E

[∥
∥xt − xi

t,k

∥
∥
2
]

≤ ηtηlK

2
E

[

‖∇f(xt)‖2
]

− ηtηl

2Kn2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2




+
ηtηlL

2K

2

(

5Kη2l
(
σ2
l + 6Kσ2

g

)
+ 30K2η2l ‖∇f(xt)‖2

)

≤
(
ηtηlK

2
+ 30K2η2l

ηtηlL
2K

2

)

E

[

‖∇f(xt)‖2
]

− ηtηl

2Kn2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2




+
5

2
ηtη

3
l L

2K2
(
σ2
l + 6Kσ2

g

)

≤
(i)

47

64
ηtηlKE

[

‖∇f(xt)‖2
]

− ηtηl

2Kn2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2


+
5

2
ηtη

3
l L

2K2
(
σ2
l + 6Kσ2

g

)

where (i) holds by using the constraint ηl ≤ 1
8KL

.

Therefore, merging all pieces together, we have,

A2 = −ηtηlKE

[

‖∇f (xt)‖2
]

+ ηtE [〈∇f (xt) , ηlK∇f (xt)−∆t〉]

≤ −17

64
ηtηlKE

[

‖∇f (xt)‖2
]

− ηtηl

2Kn2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2


+
5

2
ηtη

3
l L

2K2
(
σ2
l + 6Kσ2

g

)

Bounding E

[

‖∆t‖2
]

:

E

[

‖∆t‖2
]

≤ Kη2l
m

σ2
l +

η2l (m− 1)

nm (n− 1)
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2




+
η2l (n−m)

nm (n− 1)

[

15nK3L3η2l
(
σ2
l + 6Kσ2

g

)
+
(
90nK4L2η2l + 3nK2

)
‖∇f(xt)‖2 + 3nK2σ2

g

]

Bounding
∑T−1

t=0 E

[

‖dt‖2
]

:



T−1∑

t=0

E

[

‖dt‖2
]

≤ KTη2l
m

σ2
l +

η2l
m2

Cβ

T−1∑

t=0

E





∥
∥
∥
∥
∥

∑

i∈St

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2




≤ KTη2l
m

σ2
l +

η2l
m2

Cβ

T−1∑

t=0

E





∥
∥
∥
∥
∥

n∑

i=1

P {i ∈ St}
K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2




≤ KTη2l
m

σ2
l +

η2l
m2

m (n−m)

n (n− 1)
Cβ

T−1∑

t=0

n∑

i=1

∥
∥
∥
∥
∥

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2

+
η2l
m2

m (m− 1)

n (n− 1)
Cβ

T−1∑

t=0

∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2

≤ KTη2l
m

σ2
l +

η2l (m− 1)

mn (n− 1)
Cβ

T−1∑

t=0

∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2

+

η2l (n−m)

mn (n− 1)
Cβ

T−1∑

t=0

n∑

i=1

∥
∥
∥
∥
∥

K−1∑

k=0

[
∇fi(xi

t,k)−∇fi(xi
t)
]
+
[
∇fi(xi

t)−∇f(xt)
]
+∇f(xt)

∥
∥
∥
∥
∥

2

≤ KTη2l
m

σ2
l +

η2l (m− 1)

mn (n− 1)
Cβ

T−1∑

t=0

∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2

+

η2l (n−m)

mn (n− 1)
Cβ

T−1∑

t=0

(

15nK3L3η2l
(
σ2
l + 6Kσ2

g

)
+
(
90nK4L2η2l + 3nK2

)
‖∇f(xt)‖2 + 3nK2σ2

g

)

Merging A1, A2, A3 together,

E [f(zt+1)]− f(zt) ≤ E [〈√ηt (∇f(zt)−∇f(xt)) ,−
√
ηt∆t〉]

︸ ︷︷ ︸

A1

+E [〈∇f(xt),−ηt∆t〉]
︸ ︷︷ ︸

A2

+
L

2
η2tE

[

‖∆t‖2
]

︸ ︷︷ ︸

A3

≤ 1

2
η3tL

2

(
βtνt

1− βt

)2

E

[

‖dt‖2
]

+
1

2
ηtE

[

‖∆t‖2
]

+
L

2
η2tE

[

‖∆t‖2
]

−17

64
ηtηlKE

[

‖∇f (xt)‖2
]

− ηtηl

2Kn2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2


+
5

2
ηtη

3
l L

2K2
(
σ2
l + 6Kσ2

g

)

Reorganizing terms, we have the following,

E

[

‖∇f (xt)‖2
]

≤ 64

17

f(zt)− E [f(zt+1)]

ηtηlK
+

32

17ηlK
L2W 2

1E

[

‖dt‖2
]

+

(
32

17ηlK
+

32L

17

ηt

ηlK

)

E

[

‖∆t‖2
]

− 32

17K2n2
E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2


+
160

17
η2l L

2K
(
σ2
l + 6Kσ2

g

)

Sum over all S stages and take average, we get,



Ḡ ,
1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

E

[

‖∇f (xt)‖2
]

≤ 64

17

f(z0)− E [f(zT )]

SW2ηlK
+

32

17

L2W 2
1 η̄

W2ηlK

T−1∑

t=0

E

[

‖dt‖2
]

− 32

17

ηS

SW2K2n2

T−1∑

t=0

E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2




+
160

17
η2l L

2K
(
σ2
l + 6Kσ2

g

)
+

(
32η̄

17ηlKW2
+

32L

17

η̂2

ηlW2K

) T−1∑

t=0

E

[

‖∆t‖2
]

≤ 64

17

f(z0)− E [f(zT )]

SW2ηlK
+

T−1∑

t=0

E





∥
∥
∥
∥
∥

n∑

i=1

K−1∑

k=0

∇fi(xi
t,k)

∥
∥
∥
∥
∥

2


 ·

(

−32

17

ηS

SW2K2n2
+

η2l (m− 1)

nm (n− 1)

(
32η̄

17ηlKW2
+

32L

17

η̂2

ηlW2K

)

+
η2l (m− 1)

mn (n− 1)

32

17

L2W 2
1 η̄

W2ηlK

)

+

(
32

17

L2W 2
1 η̄

W2ηlK

η2l (n−m)

mn (n− 1)

(
90nK4L2η2l + 3nK2

)
)

·
T−1∑

t=0

‖∇f(xt)‖2

+

((
32η̄

17ηlKW2
+

32L

17

η̂2

ηlW2K

)
η2l (n−m)

nm (n− 1)

(
90nK4L2η2l + 3nK2

)
)

·
T−1∑

t=0

‖∇f(xt)‖2

+

(
ηl

m
Φ +

15 (n−m)K2L3η3l
m (n− 1)

Φ +
160

17
η2l L

2K

)

σ2
l

+

(
90 (n−m)K3L3η3l

m (n− 1)
Φ +

3ηl (n−m)K

m (n− 1)
Φ +

960

17
η2l L

2K2

)

σ2
g

where we denote Φ for ease of notation,

Φ ,
32T η̄+ 32LT η̂2 + 32L2W 2

1 T η̄

17W2

We can verify, when the following condition holds,

ηl ≤
1

(Cη + Lη̄Cη + L2W 2
1Cη)SK

m (n− 1)

n (m− 1)

where Cη = η0

ηS
.

we have the coefficient for
∑T−1

t=0 E

[∥
∥
∥
∑n

i=1

∑K−1
k=0 ∇fi(xi

t,k)
∥
∥
∥

2
]

,

−32

17

ηS

SW2K2n2
+

η2l (m− 1)

nm (n− 1)

(
32η̄

17ηlKW2
+

32L

17

η̂2

ηlW2K

)

+
η2l (m− 1)

mn (n− 1)

32

17

L2W 2
1 η̄

W2ηlK
≤ 0

With the following inequality,

1

SW2

T−1∑

t=0

‖∇f(xt)‖2 =
1

S

S−1∑

s=0

1

Tsηs

T0+···+Ts−1∑

t=T0+···+Ts−1

‖∇f(xt)‖2 ≤
1

ηS

1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

‖∇f(xt)‖2

We could verify, when the following condition holds,

ηl ≤
17

282

m

(Cη + LCη η̄ + L2W 2
1Cη)SK

We have the following,



(
32

17

L2W 2
1 η̄

W2ηlK

η2l (n−m)

mn (n− 1)

(
90nK4L2η2l + 3nK2

)
)

·
T−1∑

t=0

‖∇f(xt)‖2

+

((
32η̄

17ηlKW2
+

32L

17

η̂2

ηlW2K

)
η2l (n−m)

nm (n− 1)

(
90nK4L2η2l + 3nK2

)
)

·
T−1∑

t=0

‖∇f(xt)‖2

≤
(i)

η2l (n−m)

nm (n− 1)

141nK2

32

(
32η̄

17ηlKW2
+

32L

17

η̂2

ηlW2K
+

32

17

L2W 2
1 η̄

W2ηlK

)

·
T−1∑

t=0

‖∇f(xt)‖2

≤ η2l (n−m)

nm (n− 1)

141nK2

32

32ηS
17ηlKW2

(
Cη + LCη η̄ + L2W 2

1Cη

)
·
T−1∑

t=0

‖∇f(xt)‖2

≤
(ii)

1

2
· 1
S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

‖∇f(xt)‖2

where (i) holds as 90nK4L2η2l + 3nK2 ≤ 141
32 nK2 when ηl ≤ 1

8KL
, (ii) holds by plugging in the learning rate constraint

ηl ≤ 17
282

m

(Cη+LCη η̄+L2W 2

1
Cη)SK

.

Merging everything together, we have the following,

Ḡ ,
1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

‖∇f(xt)‖2

≤ 64

17

f(z0)− E [f(zT )]

SW2ηlK
+

(
ηl

m
Φ+

15 (n−m)K2L3η3l
m (n− 1)

Φ +
160

17
η2l L

2K

)

σ2
l

+

(
90 (n−m)K3L3η3l

m (n− 1)
Φ +

3ηl (n−m)K

m (n− 1)
Φ +

960

17
η2l L

2K2

)

σ2
g

Suppose S = 1, i.e. the typical constant hyperparameter regime, the total number of rounds are T , η̄ = η0 = Θ
(√

mK
)

and ηl = Θ
(

1√
TK

)

, W2 = Θ
(

T
√
mK

)

in this case. Assume W 2
1 = O

(√
mK

)

, recall Φ ,
32T η̄+32LTη̂2+32L2W 2

1
T η̄

17W2

, we

could verify Φ = Θ
(√

mK
)

.

We have the bound as,

Ḡ ,
1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

E

[

‖∇f(xt)‖2
]

≤ O
(

1√
TKm

)

(f(x0)− f∗) +

(

O
(

1√
TKm

)

+O
(

1√
T 3Km

)

+O
(

1

TK

))

σ2
l

+

(

O
(√

K

T 3m

)

+O
(√

K

Tm

)

+O
(
1

T

))

σ2
g

Only keeping the dominant terms,

Ḡ ,
1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

E

[

‖∇f(xt)‖2
]

≤ O
(

1√
TKm

)

(f(x0)− f∗) +O
(

1√
TKm

)

σ2
l +O

(√

K

Tm

)

σ2
g

Suppose S > 1 but S = Θ(1), i.e. the multistage regime, the total number of rounds are T , η̄ = Θ
(√

mK
)

, and η̂2 =

Θ(mK), ηl = Θ
(

1√
TK

)

, W2 = Θ
(
T
√
mK
S

)

, i.e. T η̄ is equally divided into S stages. Assume W 2
1 = O

(√
mK

)

, we could

verify Φ = Θ(
√
mK). Thus, we have the bound,



Ḡ ,
1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

E

[

‖∇f(xt)‖2
]

≤ O
(

1√
TKm

)

(f(x0)− f∗) +O
(

1√
TKm

)

σ2
l +O

(√

K

Tm

)

σ2
g

In both cases, the dominant term is O
(√

K
Tm

)

.

F Proof of Theorem 5.1 and Corollary 5.2

Proof of Autonomous Multistage GM with Uniform Arrival. We introduce a Lyapunov sequence {zt}T−1
t=0 which is devised as

follows:

zt = xt −
ηtβtνt

1− βt

dt (8)

where d0 = 0.

We could easily verify zt+1 − zt = −ηt∆t. Let −ηyt = xt+1 − xt, we first bound E

[

‖∆t‖2
]

,
∑T−1

t=0 E

[

‖dt‖2
]

, and
∑T−1

t=0 E

[

‖yt‖2
]

.

Bounding E

[

‖∆t‖2
]

:

E

[

‖∆t‖2
]

= E





∥
∥
∥
∥
∥

1

m

∑

i∈St

∆i
t−τt,i

∥
∥
∥
∥
∥

2




=
(i)

E






∥
∥
∥
∥
∥
∥

1

m

∑

i∈St

ηl

Kt,i

Kt,i−1
∑

k=0

git−τt,i,k

∥
∥
∥
∥
∥
∥

2





= E






∥
∥
∥
∥
∥
∥

1

m

∑

i∈St

ηl

Kt,i

Kt,i−1
∑

k=0

(

git−τt,i,k
−∇fi(xi

t−τt,i,k
) +∇fi(xi

t−τt,i,k
)
)

∥
∥
∥
∥
∥
∥

2





=
(ii)

E






∥
∥
∥
∥
∥
∥

1

m

∑

i∈St

ηl

Kt,i

Kt,i−1
∑

k=0

{

git−τt,i,k
−∇fi(xi

t−τt,i,k
)
}

∥
∥
∥
∥
∥
∥

2



+ E






∥
∥
∥
∥
∥
∥

1

m

∑

i∈St

ηl

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





≤
(iii)

1

m2

∑

i∈St

η2l
K2

t,i

Kt,i−1
∑

k=0

σ2
l + E






∥
∥
∥
∥
∥
∥

1

m

∑

i∈St

ηl

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





≤ η2l
m

1

Kt

σ2
l +

η2l
m2

E






∥
∥
∥
∥
∥
∥

n∑

i=1

1 {i ∈ St}
1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





where 1
Kt

= 1
m

∑

i∈St

1
Kt,i

. (i) follows from the definition of ∆i
t−τt,i

, (ii) and (iii) hold as E

[

‖∑n
i=1 xi‖2

]

=
∑n

i=1 E

[

‖xi‖2
]

when E [xi] = 0, and we know E

[

git−τt,i,k
−∇fi(xi

t−τt,i,k
)
]

= 0.

Bounding
∑T−1

t=0 E

[

‖dt‖2
]

:

We could verify:

dt =

t∑

p=0

at,p∆p, where at,p = (1− βp)

t∏

q=p+1

βq



We further get,

E

[

‖dt‖2
]

= E





∥
∥
∥
∥
∥

t∑

p=0

at,p∆p

∥
∥
∥
∥
∥

2




≤
d∑

e=1

E

[
t∑

p=0

at,p∆p,e

]2

≤
d∑

e=1

E

[(
t∑

p=0

at,p

)(
t∑

p=0

at,p∆
2
p,e

)]

≤
(

1−
t∏

q=0

βq

)
t∑

p=0

at,pE
[

‖∆p‖2
]

≤
(

1−
t∏

q=0

βq

)
t∑

p=0

at,p







η2l
m

1

Kt

σ2
l +

η2l
m2

E






∥
∥
∥
∥
∥
∥

n∑

i=1

1 {i ∈ Sp}
1

Kp,i

Kp,i−1
∑

k=0

∇fi(xi
p−τp,i,k

)

∥
∥
∥
∥
∥
∥

2











≤ η2l
m

1

Kt

σ2
l +

η2l
m2

t∑

p=0

at,p · E






∥
∥
∥
∥
∥
∥

n∑

i=1

1 {i ∈ Sp}
1

Kp,i

Kp,i−1
∑

k=0

∇fi(xi
p−τp,i,k

)

∥
∥
∥
∥
∥
∥

2





Summing over t ∈ {0, 1, . . . , T − 1},

T−1∑

t=0

E

[

‖dt‖2
]

≤ η2l
m

T−1∑

t=0

1

Kt

σ2
l +

η2l
m2

T−1∑

t=0

t∑

p=0

at,p · E






∥
∥
∥
∥
∥
∥

n∑

i=1

1 {i ∈ Sp}
1

Kp,i

Kp,i−1
∑

k=0

∇fi(xi
p−τp,i,k

)

∥
∥
∥
∥
∥
∥

2





≤ η2l
m

T−1∑

t=0

1

Kt

σ2
l +

η2l
m2

T−1∑

p=0

(
T−1∑

t=p

at,p

)

E






∥
∥
∥
∥
∥
∥

n∑

i=1

1 {i ∈ Sp}
1

Kp,i

Kp,i−1
∑

k=0

∇fi(xi
p−τp,i,k

)

∥
∥
∥
∥
∥
∥

2





≤ η2l
m

T−1∑

t=0

1

Kt

σ2
l +

η2l
m2

Cβ

T−1∑

t=0

E






∥
∥
∥
∥
∥
∥

n∑

i=1

1 {i ∈ St}
1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





Bounding
∑T−1

t=0 E

[

‖yt‖2
]

:

We could verify:

yt =

t∑

p=0

bt,p∆p,

where bt,p is defined as follows,

bt,p =

{

1− βtνt p = t

νt(1 − βp)
∏t

q=p+1 βq p < t

We further get,

E

[

‖yt‖2
]

= E





∥
∥
∥
∥
∥

t∑

p=0

bt,p∆p

∥
∥
∥
∥
∥

2




≤
d∑

e=1

E

[
t∑

p=0

bt,p∆p,e

]2

≤
d∑

e=1

E

[(
t∑

p=0

bt,p

)(
t∑

p=0

bt,p∆
2
p,e

)]

≤
(

1− νt

t∏

q=0

βq

)
t∑

p=0

bt,pE
[

‖∆p‖2
]

≤
(

1− νt

t∏

q=0

βq

)
t∑

p=0

bt,p







η2l
m

1

Kt

σ2
l +

η2l
m2

E






∥
∥
∥
∥
∥
∥

n∑

i=1

1 {i ∈ Sp}
1

Kp,i

Kp,i−1
∑

k=0

∇fi(xi
p−τp,i,k

)

∥
∥
∥
∥
∥
∥

2











≤ η2l
m

1

Kt

σ2
l +

η2l
m2

t∑

p=0

bt,p · E






∥
∥
∥
∥
∥
∥

n∑

i=1

1 {i ∈ Sp}
1

Kp,i

Kp,i−1
∑

k=0

∇fi(xi
p−τp,i,k

)

∥
∥
∥
∥
∥
∥

2







Summing over t ∈ {0, 1, . . . , T − 1},

T−1∑

t=0

E

[

‖yt‖2
]

≤ η2l
m

T−1∑

t=0

1

Kt

σ2
l +

η2l
m2

T−1∑

t=0

t∑

p=0

bt,p · E






∥
∥
∥
∥
∥
∥

n∑

i=1

1 {i ∈ Sp}
1

Kp,i

Kp,i−1
∑

k=0

∇fi(xi
p−τp,i,k

)

∥
∥
∥
∥
∥
∥

2





≤ η2l
m

T−1∑

t=0

1

Kt

σ2
l +

η2l
m2

T−1∑

p=0

(
T−1∑

t=p

bt,p

)

E






∥
∥
∥
∥
∥
∥

n∑

i=1

1 {i ∈ Sp}
1

Kp,i

Kp,i−1
∑

k=0

∇fi(xi
p−τp,i,k

)

∥
∥
∥
∥
∥
∥

2





≤ η2l
m

T−1∑

t=0

1

Kt

σ2
l +

η2l
m2

Cβ

T−1∑

t=0

E






∥
∥
∥
∥
∥
∥

n∑

i=1

1 {i ∈ St}
1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





Since f is L-smooth, taking conditional expectation with respect to all randomness prior to step t, we have

E [f(zt+1)] ≤ f(zt) + E [〈∇f(zt), zt+1 − zt〉] +
L

2
E

[

‖zt+1 − zt‖2
]

≤ f(zt) + E [〈∇f(zt),−ηt∆t〉] +
L

2
η2tE

[

‖∆t‖2
]

≤ f(zt) + E [〈√ηt (∇f(zt)−∇f(xt)) ,−
√
ηt∆t〉]

︸ ︷︷ ︸

A1

+E [〈∇f(xt),−ηt∆t〉]
︸ ︷︷ ︸

A2

+
L

2
η2tE

[

‖∆t‖2
]

︸ ︷︷ ︸

A3

Bounding A1:
A1 = E [〈√ηt (∇f(zt)−∇f(xt)) ,−

√
ηt∆t〉]

≤
(i)

E [‖√ηt (∇f(zt)−∇f(xt))‖ · ‖−
√
ηt∆t‖]

≤
(ii)

1

2
η3tL

2

(
βtνt

1− βt

)2

E

[

‖dt‖2
]

+
1

2
ηtE

[

‖∆t‖2
]

where (i) holds by applying Cauchy-Schwarz inequality, and (ii) follows from Young’s inequality and f is L-smooth.
Bounding A2:

A2 = E [〈∇f(xt),−ηt∆t〉]
= ηtE [〈∇f (xt) , ηl∇f (xt)−∆t − ηl∇f (xt)〉]

= −ηtηlE
[

‖∇f (xt)‖2
]

+ ηtE [〈∇f (xt) , ηl∇f (xt)−∆t〉]

where we further bound ηtE [〈∇f (xt) , ηl∇f (xt)−∆t〉],

ηtE [〈∇f (xt) , ηl∇f (xt)−∆t〉] = ηtE





〈

√
ηl∇f(xt),

√
ηl

m

∑

i∈St

1

Kt,i

Kt,i−1
∑

k=0

(

∇f(xt)− git−τt,i,k

)
〉



=
(i)

ηtE





〈

√
ηl∇f(xt),

√
ηl

m

∑

i∈St

1

Kt,i

Kt,i−1
∑

k=0

(

∇f(xt)−∇fi(xi
t−τt,i,k

)
)
〉



=
(ii)

ηtE





〈

√
ηl∇f(xt),

√
ηl

n

n∑

i=1

1

Kt,i

Kt,i−1
∑

k=0

(

∇fi(xt)−∇fi(xi
t−τt,i,k

)
)
〉



=
(iii)

ηtηl

2
E

[

‖∇f(xt)‖2
]

− ηtηl

2
E






∥
∥
∥
∥
∥
∥

1

n

n∑

i=1

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





+
ηtηl

2
E






∥
∥
∥
∥
∥
∥

∇f(xt)−
1

n

n∑

i=1

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2







where (i) holds as we take conditional expectation with respect to all randomness prior to step t. (ii) holds due to the
following equality and the definition of∇f(xt) =

1
n

∑n
i=1∇fi(xt). (iii) holds as 〈a, b〉 = 1

2 ‖a‖
2 + 1

2 ‖b‖
2 − 1

2 ‖a− b‖2.

E




1

m

∑

i∈St

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)



 = E




1

m

n∑

i=1

1 (i ∈ St)
1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)





=
1

m
E





n∑

i=1

P {i ∈ St}
1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)



 =
(i)

1

n

n∑

i=1

E




1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)





where (i) holds due to uniform arrival assumption, in which P {i ∈ St} = m
n

.

We further have,

ηtηl

2
E






∥
∥
∥
∥
∥
∥

∇f(xt)−
1

n

n∑

i=1

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





=
ηtηl

2
E






∥
∥
∥
∥
∥
∥

1

n

n∑

i=1

1

Kt,i

Kt,i−1
∑

k=0

(

∇fi(xt)−∇fi(xi
t−τt,i,k

)
)

∥
∥
∥
∥
∥
∥

2





=
ηtηl

2
E






∥
∥
∥
∥
∥
∥

1

n

n∑

i=1

1

Kt,i

Kt,i−1
∑

k=0

(

∇fi(xt)−∇fi(xt−τt,i) +∇fi(xt−τt,i )−∇fi(xi
t−τt,i,k

)
)

∥
∥
∥
∥
∥
∥

2





≤
(i)

ηtηlE





∥
∥
∥
∥
∥

1

n

n∑

i=1

(
∇fi(xt)−∇fi(xt−τt,i)

)

∥
∥
∥
∥
∥

2


+ ηtηlE






∥
∥
∥
∥
∥
∥

1

n

n∑

i=1

1

Kt,i

Kt,i−1
∑

k=0

(

∇fi(xt−τt,i)−∇fi(xi
t−τt,i,k

)
)

∥
∥
∥
∥
∥
∥

2





≤
(ii)

ηtηl

n

n∑

i=1

E

[∥
∥∇fi(xt)−∇fi(xt−τt,i)

∥
∥
2
]

+
ηtηl

n

n∑

i=1

1

Kt,i

Kt,i−1
∑

k=0

E

[∥
∥
∥∇fi(xt−τt,i)−∇fi(xi

t−τt,i,k
)
∥
∥
∥

2
]

≤
(iii)

ηtηlL
2

n

n∑

i=1

E

[∥
∥xt − xt−τt,i

∥
∥
2
]

+
ηtηlL

2

n

n∑

i=1

1

Kt,i

Kt,i−1
∑

k=0

E

[∥
∥
∥xt−τt,i − xi

t−τt,i,k

∥
∥
∥

2
]

where (i) and (ii) hold as ‖
∑n

i=1 xi‖2 ≤ n
∑n

i=1 ‖xi‖2, (iii) holds as fi is L-smooth.

Thus, we have,

A2 ≤ −
ηtηl

2
E

[

‖∇f(xt)‖2
]

− ηtηl

2
E






∥
∥
∥
∥
∥
∥

1

n

n∑

i=1

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





+
ηtηlL

2

n

n∑

i=1

E

[∥
∥xt − xt−τt,i

∥
∥
2
]

+
ηtηlL

2

n

n∑

i=1

1

Kt,i

Kt,i−1
∑

k=0

E

[∥
∥
∥xt−τt,i − xi

t−τt,i,k

∥
∥
∥

2
]

When ηl ≤ 1
8Kt,iL

, we have,

E

[∥
∥
∥xt−τt,i − xi

t−τt,i,k

∥
∥
∥

2
]

≤ 5Kt,iη
2
l

(
σ2
l + 6Kt,iσ

2
g

)
+ 30K2

t,iη
2
l E

[∥
∥∇f(xt−τt,i)

∥
∥
2
]



We can further bound 1
n

∑n
i=1 E

[∥
∥xt − xt−τt,i

∥
∥
2
]

1

n

n∑

i=1

E

[∥
∥xt − xt−τt,i

∥
∥
2
]

≤
(i)

E

[∥
∥xt − xt−τt,u

∥
∥
2
]

= E






∥
∥
∥
∥
∥
∥

t−1∑

k=t−τt,u

(xk+1 − xk)

∥
∥
∥
∥
∥
∥

2





≤
(ii)

E






∥
∥
∥
∥
∥
∥

t−1∑

k=t−τt,u

ηkyk

∥
∥
∥
∥
∥
∥

2



 ≤

(iii)
τη20

t−1∑

k=t−τt,u

E

[

‖yk‖2
]

where (i) holds as we define u = argmaxi∈{1,2,...,n} E
[∥
∥xt − xt−τt,i

∥
∥
2
]

, (ii) follows from the definition of yk, (iii) holds

as bounded maximum delay assumption, i.e. τt,i ≤ τ for any t and i, and learning rate is decaying, i.e. ηt ≤ η0.
Merging all pieces together,

A2 ≤ −
ηtηl

2
E

[

‖∇f(xt)‖2
]

− ηtηl

2
E






∥
∥
∥
∥
∥
∥

1

n

n∑

i=1

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





+ηtηlL
2τη20

t−1∑

k=t−τt,u

E

[

‖yk‖2
]

+
ηtηlL

2

n

n∑

i=1

{

5Kt,iη
2
l

(
σ2
l + 6Kt,iσ

2
g

)
+ 30K2

t,iη
2
l E

[∥
∥∇f(xt−τt,i)

∥
∥
2
]}

= −ηtηl

2
E

[

‖∇f(xt)‖2
]

− ηtηl

2
E






∥
∥
∥
∥
∥
∥

1

n

n∑

i=1

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2



+ ηtηlL

2τη20

t−1∑

k=t−τt,u

E

[

‖yk‖2
]

+
30ηtη

3
l L

2

n

n∑

i=1

K2
t,iE

[∥
∥∇f(xt−τt,i)

∥
∥
2
]

+ 5K̄tηtη
3
l L

2σ2
l + 30K̂2

t ηtη
3
l L

2σ2
g

where K̄t ,
1
n

∑n
i=1 Kt,i and K̂2

t , 1
n

∑n
i=1 K

2
t,i.

Plug all pieces back in E [f(zt+1)] ≤ f(zt) +A1 +A2 +A3,

E [f(zt+1)]− f(zt) ≤ −
ηtηl

2
E

[

‖∇f(xt)‖2
]

− ηtηl

2
E






∥
∥
∥
∥
∥
∥

1

n

n∑

i=1

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





+ηtηlL
2τη20

t−1∑

k=t−τt,u

E

[

‖yk‖2
]

+
30ηtη

3
l L

2

n

n∑

i=1

K2
t,iE

[∥
∥∇f(xt−τt,i)

∥
∥
2
]

+ 5K̄tηtη
3
l L

2σ2
l + 30K̂2

t ηtη
3
l L

2σ2
g

+
1

2
η3tL

2

(
βtνt

1− βt

)2

E

[

‖dt‖2
]

+
1

2
ηtE

[

‖∆t‖2
]

+
L

2
η2tE

[

‖∆t‖2
]

Reorganizing terms and we have,

E

[

‖∇f(xt)‖2
]

≤ 2 (f(zt)− E [f(zt+1)])

ηtηl
− E






∥
∥
∥
∥
∥
∥

1

n

n∑

i=1

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





+2L2τη20

t−1∑

k=t−τt,u

E

[

‖yk‖2
]

+
60η2l L

2

n

n∑

i=1

K2
t,iE

[∥
∥∇f(xt−τt,i)

∥
∥
2
]

+ 10K̄tη
2
l L

2σ2
l + 60K̂2

t η
2
l L

2σ2
g

+
L2W 2

1

ηl
E

[

‖dt‖2
]

+
1

ηl
E

[

‖∆t‖2
]

+
Lηt

ηl
E

[

‖∆t‖2
]

Sum over all S stages and take average, we get,



Ḡ ,
1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

‖∇f(xt)‖2 ≤
2 (f(z0)− E [f(zT )])

SW2ηl

− ηS

SW2
E






∥
∥
∥
∥
∥
∥

1

n

n∑

i=1

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2



+

2L2τ η̂3

W2

T−1∑

t=0

t−1∑

k=t−τt,u

E

[

‖yk‖2
]

+
60η2l L

2

n

1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

n∑

i=1

K2
t,iE

[∥
∥∇f(xt−τt,i)

∥
∥
2
]

+
L2W 2

1 η̄

W2ηl

T−1∑

t=0

E

[

‖dt‖2
]

+
η̄

W2ηl

T−1∑

t=0

E

[

‖∆t‖2
]

+
Lη̂2

W2ηl

T−1∑

t=0

E

[

‖∆t‖2
]

+10η2l L
2







1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

K̄t






σ2
l + 60η2l L

2







1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

K̂2
t






σ2
g

where η̄ = 1
S

∑S−1
s=0 ηs, η̂2 = 1

S

∑S−1
s=0 η2s , and η̂3 = 1

S

∑S−1
s=0 η3s , respectively.

When the following holds,

ηl ≤
√

1

120L2CητK
2
t,max

, ∀t ∈ {0, . . . , T − 1}

we could verify the following inequality,

60η2l L
2

n

1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

n∑

i=1

K2
t,iE

[∥
∥∇f(xt−τt,i)

∥
∥
2
]

≤
(i)

60η2l L
2 η0

SW2

T−1∑

t=0

K2
t,maxE

[∥
∥∇f(xt−τt,i)

∥
∥
2
]

≤
(ii)

60η2l L
2τ

η0

SW2

T−1∑

t=0

K2
t,maxE

[

‖∇f(xt)‖2
]

≤
(iii)

ηS

2SW2

T−1∑

t=0

E

[

‖∇f(xt)‖2
]

≤
(iv)

1

2

1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

‖∇f(xt)‖2

where (i) follows from the definition ofK2
t,max = maxi∈{1,2,...,n} K

2
t,i, andW2 = ηsTs for all s ∈ {1, . . . , S} and ηS ≤ ηs ≤

η0. (ii) follows from the maximum delay assumption. (iii) holds by plugging in the assumption ηl ≤
√

ηS

120L2η0τK
2

t,max
, ∀t ∈

{0, . . . , T − 1}. (iv) holds as ηS

2SW2

∑T−1
t=0 E

[

‖∇f(xt)‖2
]

≤ ηS

2
1
S

∑S−1
s=0

1
Tsηs

∑T0+···+Ts−1
t=T0+···+Ts−1

‖∇f(xt)‖2 and 1
ηs
≤ 1

ηS
for

all s.

With the maximum delay assumption, we have 2L2τ η̂3

W2

∑T−1
t=0

∑t−1
k=t−τt,u

E

[

‖yk‖2
]

≤ 2L2τ2η̂3

W2

∑T−1
t=0 E

[

‖yt‖2
]

. Merging

all pieces, we have,



1

2
· 1
S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

‖∇f(xt)‖2 ≤
2 (f(z0)− E [f(zT )])

SW2ηl

− ηS

SW2
E






∥
∥
∥
∥
∥
∥

1

n

n∑

i=1

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2



+

2L2τ2η̂3

W2

T−1∑

t=0

E

[

‖yt‖2
]

+
L2W 2

1 η̄

W2ηl

T−1∑

t=0

E

[

‖dt‖2
]

+
η̄

W2ηl

T−1∑

t=0

E

[

‖∆t‖2
]

+
Lη̂2

W2ηl

T−1∑

t=0

E

[

‖∆t‖2
]

+10η2l L
2







1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

K̄t






σ2
l + 60η2l L

2







1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

K̂2
t






σ2
g

We define φ1, φ2, and φ3 for ease of notation.

φ1 ,
1

T

T−1∑

t=0

K̄t, and φ2 ,
1

T

T−1∑

t=0

K̂2
t , and φ3 ,

1

T

T−1∑

t=0

1

Kt

We could verify,

1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

K̄t ≤
(i)

1

W2

1

S

S−1∑

s=0

ηs

T0+···+Ts−1∑

t=T0+···+Ts−1

K̄t ≤
(ii)

η̄

W2

T−1∑

t=0

K̄t =
T η̄

W2
φ1

(i) holds due to Tsηs = W2 by assumption, (ii) holds due to 1
S

∑S−1
s=0 ηs

∑T0+···+Ts−1
t=T0+···+Ts−1

K̄t ≤
(

1
S

∑S−1
s=0 ηs

)

·
(
∑S−1

s=0

∑T0+···+Ts−1
t=T0+···+Ts−1

K̄t

)

= η̄
∑T−1

t=0 K̄t.

Similarly, we have,

1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

K̂2
t ≤

T η̄

W2
φ2, and

1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

1

Kt

≤ T η̄

W2
φ3

Plugging in the bounds for
∑T−1

t=0 E

[

‖∆t‖2
]

,
∑T−1

t=0 E

[

‖yt‖2
]

, and
∑T−1

t=0 E

[

‖dt‖2
]

,

1

2
· 1
S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

‖∇f(xt)‖2 ≤
2 (f(z0)− E [f(zT )])

SW2ηl

+
60η2l L

2T η̄φ2

W2
σ2
g −

ηS

SW2
E






∥
∥
∥
∥
∥
∥

1

n

n∑

i=1

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





+

(
10η2l L

2T η̄

W2
φ1 +

2L2τ2η̂3η2l T

mW2
φ3 +

L2W 2
1 η̄ηlT

mW2
φ3 +

η̄ηlT

mW2
φ3 +

Lη̂2ηl

mW2
φ3

)

σ2
l

+
η2l
m2

(
η̄

W2ηl
+

Lη̂2

W2ηl
+

L2W 2
1 η̄Cβ

W2ηl
+

2L2τ2η̂3Cβ

W2

)

·E






∥
∥
∥
∥
∥
∥

n∑

i=1

1 {i ∈ St}
1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





We now bound E

[∥
∥
∥
∑n

i=1 1 {i ∈ St} 1
Kt,i

∑Kt,i−1
k=0 ∇fi(xi

t−τt,i,k
)
∥
∥
∥

2
]

,



E






∥
∥
∥
∥
∥
∥

n∑

i=1

1 {i ∈ St}
1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2



 =

n∑

i=1

P {i ∈ St}

∥
∥
∥
∥
∥
∥

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2

+
∑

i6=j

P {i, j ∈ St}
〈

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

),
1

Kt,j

Kt,j−1
∑

k=0

∇fj(xj
t−τt,j ,k

)

〉

=
(i)

m

n

n∑

i=1

∥
∥
∥
∥
∥
∥

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2

+
m (m− 1)

n (n− 1)

∑

i6=j

〈

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

),
1

Kt,j

Kt,j−1
∑

k=0

∇fj(xj
t−τt,j ,k

)

〉

=
(ii)

m2

n

n∑

i=1

∥
∥
∥
∥
∥
∥

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2

−m (m− 1)

2n (n− 1)

∑

i6=j

∥
∥
∥
∥
∥
∥

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)− 1

Kt,j

Kt,j−1
∑

k=0

∇fj(xj
t−τt,j ,k

)

∥
∥
∥
∥
∥
∥

2

where (i) follows from uniform arrival assumption, i.e. P {i, j ∈ St} = m(m−1)
n(n−1) and P {i ∈ St} = m

n
. (ii) follows from

〈a, b〉 = 1
2 ‖a‖

2
+ 1

2 ‖b‖
2 − 1

2 ‖a− b‖2.

The following equality with respect to E

[∥
∥
∥
∑n

i=1
1

Kt,i

∑Kt,i−1
k=0 ∇fi(xi

t−τt,i,k
)
∥
∥
∥

2
]

is straightforward to verify,

E






∥
∥
∥
∥
∥
∥

n∑

i=1

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2



 = n

n∑

i=1

E






∥
∥
∥
∥
∥
∥

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





−1

2

∑

i6=j

∥
∥
∥
∥
∥
∥

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)− 1

Kt,j

Kt,j−1
∑

k=0

∇fj(xj
t−τt,j ,k

)

∥
∥
∥
∥
∥
∥

2

If the following condition holds,

2L2τ2η̂2C2
ηSη

2
l +

(
L2W 2

1C
2
η + Lη̄Cη + Cη

)
Sηl ≤

m

n

we have,



− ηS

SW2
E






∥
∥
∥
∥
∥
∥

1

n

n∑

i=1

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





+
η2l
m2

(
η0

SW2ηl
+

Lη20
SW2ηl

+
L2W 2

1 η0Cβ

SW2ηl
+

2L2τ2η30Cβ

SW2

)

· E






∥
∥
∥
∥
∥
∥

n∑

i=1

1 {i ∈ St}
1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





≤
(i)
− ηS

SW2n2
E






∥
∥
∥
∥
∥
∥

n∑

i=1

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





+
ηS

mnSW2
E






∥
∥
∥
∥
∥
∥

n∑

i=1

1 {i ∈ St}
1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





=
(ii)
− ηS

SW2n

n∑

i=1

∥
∥
∥
∥
∥
∥

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2

+
mηS

n2SW2

n∑

i=1

∥
∥
∥
∥
∥
∥

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2

+
(n−m)ηS

2n2SW2(n− 1)

∑

i6=j

∥
∥
∥
∥
∥
∥

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)− 1

Kt,j

Kt,j−1
∑

k=0

∇fj(xj
t−τt,j ,k

)

∥
∥
∥
∥
∥
∥

2

≤
(iii)

(

− ηS

SW2n
+

mηS

n2SW2
+

(n−m)ηS
n2SW2

) n∑

i=1

∥
∥
∥
∥
∥
∥

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2

=
(iv)

0

where (i) holds by plugging in the assumption, 2L2τ2η̂2C2
ηSη

2
l +

(
L2W 2

1C
2
η + Lη̄Cη + Cη

)
Sηl ≤

m
n

. (ii) holds by plugging in the equality for E

[∥
∥
∥
∑n

i=1
1

Kt,i

∑Kt,i−1
k=0 ∇fi(xi

t−τt,i,k
)
∥
∥
∥

2
]

and

E

[∥
∥
∥
∑n

i=1 1 {i ∈ St} 1
Kt,i

∑Kt,i−1
k=0 ∇fi(xi

t−τt,i,k
)
∥
∥
∥

2
]

. (iii) holds as
∑

i6=j

∥
∥
∥

1
Kt,i

∑Kt,i−1
k=0 ∇fi(xi

t−τt,i,k
)− 1

Kt,j

∑Kt,j−1
k=0 ∇fj(xj

t−τt,j ,k
)
∥
∥
∥

2(n− 1)
∑n

i=1

∥
∥
∥

1
Kt,i

∑Kt,i−1
k=0 ∇fi(xi

t−τt,i,k
)
∥
∥
∥

2

. (iv) holds as − ηS

SW2n
+ mηS

n2SW2
+ (n−m)ηS

n2SW2
= 0.

Merging all pieces together,

1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

‖∇f(xt)‖2 ≤
4 (f(x0)− f∗)

SW2ηl
+

120η2l L
2T η̄φ2

W2
σ2
g

+

(
20η2l L

2T η̄

W2
φ1 +

4L2τ2η̂3η2l T

mW2
φ3 +

2L2W 2
1 η̄ηlT

mW2
φ3 +

2η̄ηlT

mW2
φ3 +

2Lη̂2ηl
mW2

φ3

)

σ2
l

Suppose S = 1, i.e. the typical constant hyperparameter regime, and further suppose local updating number as K , the

total number of rounds as T , η0 = η̄ = Θ
(√

mK
)

and ηl = Θ
(

1√
T

)

. In this case, φ1 = K , φ2 = K2, φ3 = 1
K

,

W2 = Θ
(

T
√
mK

)

. Assume W 2
1 = O

(√
mK

)

. We have the bound as,

We have the bounds as,

1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

‖∇f(xt)‖2 ≤ O
(

1√
mKT

)

(f(z0)− f∗)+

+

(

O
(
K

T

)

+O
(
τ2

T

)

+O
(

1

mK
√
T

)

+O
(

1√
mKT

))

σ2
l +O

(
K2

T

)

σ2
g

Only keep the dominant terms, we could get,



1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

‖∇f(xt)‖2 ≤ O
(

1√
mKT

)

(f(z0)− f∗)+

+

(

O
(
τ2

T

)

+O
(

1√
mKT

))

σ2
l +O

(
K2

T

)

σ2
g

Suppose S = Θ(1), i.e. the multistage regime, the total number of rounds are T , η̄ = Θ
(√

mK
)

, η̂2 = Θ(mK), η̂3 =

Θ
(

m
3

2K
3

2

)

, and ηl = Θ
(

1√
T

)

, W2 = Θ
(

T
√
mK
S

)

, i.e. T η̄ is equally divided into S stages. Assume W 2
1 = O

(√
mK

)

. We

have the bound as,

1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

‖∇f(xt)‖2 ≤ O
(

1√
mKT

)

(f(z0)− f∗)+

+

(

O
(
τ2

T

)

+O
(

1√
mKT

))

σ2
l +O

(
K2

T

)

σ2
g

In both cases, the rate is O
(

1√
mKT

)

+O
(

τ2

T

)

+O
(

K2

T

)

.

G Proof of Corollary 5.4

Corollary G.1 (Formal Statement of Corollary 5.4). We optimize f(x) using Algorithm 4 (General Arrival) and {fi}ni=1 fulfills

Assumptions 1-3. Suppose bounded maximum delay, i.e. τt,i ≤ τ < ∞ for any i ∈ St and t ∈ {1, . . . , T }. Denote Cη ,
η1

ηS
.

Under the condition ηl ≤ min

{

1
8Kt,maxL

,
√

1
180L2CητK

2
t,max

}

. We would have:

Ḡ ≤ 4 (f(z0)− f∗)

SW2ηl
++Φlσ

2
l +Φgσ

2
g

where we define η̄ , 1
S

∑S−1
s=0 ηs (average server learning rate), η̂2 , 1

S

∑S−1
s=0 η2s , η̂3 , 1

S

∑S−1
s=0 η3s , 1

Kt
= 1

m

∑

i∈St

1
Kt,i

,

K̄t , 1
m

∑

i∈St
Kt,i, K̂

2
t , 1

m

∑

i∈St
K2

t,i, φ1 , 1
T

∑T−1
t=0 K̄t, φ2 , 1

T

∑T−1
t=0 K̂2

t , and φ3 , 1
T

∑T−1
t=0

1
Kt

, for ease of

notation. And Φl ,
30η2

l L
2φ1T η̄

W2

+
6L2τ2η̂3η2

l T

mW2

φ3 +
2L2W 2

1
η̄ηlT

mW2

φ3 +
2η̄ηlT
mW2

φ3 +
2Lη̂2ηlT
mW2

φ3 and Φg , 6 +
180η2

l L
2T η̄φ2

W2

.

Φl ,
30η2l L

2φ1T η̄

W2
+

6L2τ2η̂3η2l T

mW2
φ3 +

2L2W 2
1 η̄ηlT

mW2
φ3

+
2η̄ηlT

mW2
φ3 +

2Lη̂2ηlT

mW2
φ3

Φg , 6 +
180η2l L

2T η̄φ2

W2

Suppose S = Θ(1), i.e. the multistage regime, the total number of rounds are T , η̄ = Θ
(√

mK
)

, η̂2 = Θ(mK), η̂3 =

Θ
(

m
3

2K
3

2

)

, and ηl = Θ
(

1√
T

)

, W2 = Θ
(

T
√
mK
S

)

, i.e. T η̄ is equally divided into S stages. Assume W 2
1 = O

(√
mK

)

. We

have the bound as,

Ḡ ≤ O
(

1√
mKT

)

+O
(
τ2

T

)

+O
(
K2

T

)

+O
(
σ2
g

)

Proof of Multistage GM with General Arrival. We introduce a Lyapunov sequence {zt}T−1
t=0 which is devised as follows:

zt = xt −
ηtβtνt

1− βt

dt (9)

where d0 = 0.



We could easily verify zt+1 − zt = −ηt∆t. Let −ηyt = xt+1 − xt, we first bound E

[

‖∆t‖2
]

,
∑T−1

t=0 E

[

‖dt‖2
]

, and
∑T−1

t=0 E

[

‖yt‖2
]

.

Bounding E

[

‖∆t‖2
]

:

E

[

‖∆t‖2
]

= E





∥
∥
∥
∥
∥

1

m

∑

i∈St

∆i
t−τt,i

∥
∥
∥
∥
∥

2




=
(i)

E






∥
∥
∥
∥
∥
∥

1

m

∑

i∈St

ηl

Kt,i

Kt,i−1
∑

k=0

git−τt,i,k

∥
∥
∥
∥
∥
∥

2





= E






∥
∥
∥
∥
∥
∥

1

m

∑

i∈St

ηl

Kt,i

Kt,i−1
∑

k=0

(

git−τt,i,k
−∇fi(xi

t−τt,i,k
) +∇fi(xi

t−τt,i,k
)
)

∥
∥
∥
∥
∥
∥

2





=
(ii)

E






∥
∥
∥
∥
∥
∥

1

m

∑

i∈St

ηl

Kt,i

Kt,i−1
∑

k=0

{

git−τt,i,k
−∇fi(xi

t−τt,i,k
)
}

∥
∥
∥
∥
∥
∥

2



+ E






∥
∥
∥
∥
∥
∥

1

m

∑

i∈St

ηl

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





≤
(iii)

1

m2

∑

i∈St

η2l
K2

t,i

Kt,i−1
∑

k=0

σ2
l + E






∥
∥
∥
∥
∥
∥

1

m

∑

i∈St

ηl

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





≤ η2l
m

1

Kt

σ2
l +

η2l
m2

E






∥
∥
∥
∥
∥
∥

∑

i∈St

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





where 1
Kt

= 1
m

∑

i∈St

1
Kt,i

. (i) follows from the definition of ∆i
t−τt,i

, (ii) and (iii) hold as E

[

‖∑n
i=1 xi‖2

]

=
∑n

i=1 E

[

‖xi‖2
]

when E [xi] = 0, and we know E

[

git−τt,i,k
−∇fi(xi

t−τt,i,k
)
]

= 0.

Bounding
∑T−1

t=0 E

[

‖dt‖2
]

:

We could verify:

dt =

t∑

p=0

at,p∆p, where at,p = (1− βp)

t∏

q=p+1

βq

We further get,

E

[

‖dt‖2
]

= E





∥
∥
∥
∥
∥

t∑

p=0

at,p∆p

∥
∥
∥
∥
∥

2




≤
d∑

e=1

E

[
t∑

p=0

at,p∆p,e

]2

≤
d∑

e=1

E

[(
t∑

p=0

at,p

)(
t∑

p=0

at,p∆
2
p,e

)]

≤
(

1−
t∏

q=0

βq

)
t∑

p=0

at,pE
[

‖∆p‖2
]

≤
(

1−
t∏

q=0

βq

)
t∑

p=0

at,p







η2l
m

1

Kt

σ2
l +

η2l
m2

E






∥
∥
∥
∥
∥
∥

∑

i∈St

1

Kp,i

Kp,i−1
∑

k=0

∇fi(xi
p−τp,i,k

)

∥
∥
∥
∥
∥
∥

2











≤ η2l
m

1

Kt

σ2
l +

η2l
m2

t∑

p=0

at,p · E






∥
∥
∥
∥
∥
∥

∑

i∈St

1

Kp,i

Kp,i−1
∑

k=0

∇fi(xi
p−τp,i,k

)

∥
∥
∥
∥
∥
∥

2







Summing over t ∈ {0, 1, . . . , T − 1},

T−1∑

t=0

E

[

‖dt‖2
]

≤ η2l
m

T−1∑

t=0

1

Kt

σ2
l +

η2l
m2

T−1∑

t=0

t∑

p=0

at,p · E






∥
∥
∥
∥
∥
∥

∑

i∈St

1

Kp,i

Kp,i−1
∑

k=0

∇fi(xi
p−τp,i,k

)

∥
∥
∥
∥
∥
∥

2





≤ η2l
m

T−1∑

t=0

1

Kt

σ2
l +

η2l
m2

T−1∑

p=0

(
T−1∑

t=p

at,p

)

E






∥
∥
∥
∥
∥
∥

∑

i∈St

1

Kp,i

Kp,i−1
∑

k=0

∇fi(xi
p−τp,i,k

)

∥
∥
∥
∥
∥
∥

2





≤ η2l
m

T−1∑

t=0

1

Kt

σ2
l +

η2l
m2

Cβ

T−1∑

t=0

E






∥
∥
∥
∥
∥
∥

∑

i∈St

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





Bounding
∑T−1

t=0 E

[

‖yt‖2
]

:

We could verify:

yt =

t∑

p=0

bt,p∆p,

where bt,p is defined as follows,

bt,p =

{

1− βtνt p = t

νt(1 − βp)
∏t

q=p+1 βq p < t

We further get,

E

[

‖yt‖2
]

= E





∥
∥
∥
∥
∥

t∑

p=0

bt,p∆p

∥
∥
∥
∥
∥

2




≤
d∑

e=1

E

[
t∑

p=0

bt,p∆p,e

]2

≤
d∑

e=1

E

[(
t∑

p=0

bt,p

)(
t∑

p=0

bt,p∆
2
p,e

)]

≤
(

1− νt

t∏

q=0

βq

)
t∑

p=0

bt,pE
[

‖∆p‖2
]

≤
(

1− νt

t∏

q=0

βq

)
t∑

p=0

bt,p







η2l
m

1

Kt

σ2
l +

η2l
m2

E






∥
∥
∥
∥
∥
∥

∑

i∈St

1

Kp,i

Kp,i−1
∑

k=0

∇fi(xi
p−τp,i,k

)

∥
∥
∥
∥
∥
∥

2











≤ η2l
m

1

Kt

σ2
l +

η2l
m2

t∑

p=0

bt,p · E






∥
∥
∥
∥
∥
∥

∑

i∈St

1

Kp,i

Kp,i−1
∑

k=0

∇fi(xi
p−τp,i,k

)

∥
∥
∥
∥
∥
∥

2





Summing over t ∈ {0, 1, . . . , T − 1},

T−1∑

t=0

E

[

‖yt‖2
]

≤ η2l
m

T−1∑

t=0

1

Kt

σ2
l +

η2l
m2

T−1∑

t=0

t∑

p=0

bt,p · E






∥
∥
∥
∥
∥
∥

∑

i∈St

1

Kp,i

Kp,i−1
∑

k=0

∇fi(xi
p−τp,i,k

)

∥
∥
∥
∥
∥
∥

2





≤ η2l
m

T−1∑

t=0

1

Kt

σ2
l +

η2l
m2

T−1∑

p=0

(
T−1∑

t=p

bt,p

)

E






∥
∥
∥
∥
∥
∥

∑

i∈St

1

Kp,i

Kp,i−1
∑

k=0

∇fi(xi
p−τp,i,k

)

∥
∥
∥
∥
∥
∥

2





≤ η2l
m

T−1∑

t=0

1

Kt

σ2
l +

η2l
m2

Cβ

T−1∑

t=0

E






∥
∥
∥
∥
∥
∥

∑

i∈St

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





Since f is L-smooth, taking conditional expectation with respect to all randomness prior to step t, we have



E [f(zt+1)] ≤ f(zt) + E [〈∇f(zt), zt+1 − zt〉] +
L

2
E

[

‖zt+1 − zt‖2
]

≤ f(zt) + E [〈∇f(zt),−ηt∆t〉] +
L

2
η2tE

[

‖∆t‖2
]

≤ f(zt) + E [〈√ηt (∇f(zt)−∇f(xt)) ,−
√
ηt∆t〉]

︸ ︷︷ ︸

A1

+E [〈∇f(xt),−ηt∆t〉]
︸ ︷︷ ︸

A2

+
L

2
η2tE

[

‖∆t‖2
]

︸ ︷︷ ︸

A3

Bounding A1:

A1 = E [〈√ηt (∇f(zt)−∇f(xt)) ,−
√
ηt∆t〉]

≤
(i)

E [‖√ηt (∇f(zt)−∇f(xt))‖ · ‖−
√
ηt∆t‖]

≤
(ii)

1

2
η3tL

2

(
βtνt

1− βt

)2

E

[

‖dt‖2
]

+
1

2
ηtE

[

‖∆t‖2
]

where (i) holds by applying Cauchy-Schwarz inequality, and (ii) follows from Young’s inequality and f is L-smooth.

Bounding A2:

A2 = E [〈∇f(xt),−ηt∆t〉]
= ηtE [〈∇f (xt) , ηl∇f (xt)−∆t − ηl∇f (xt)〉]

= −ηtηlE
[

‖∇f (xt)‖2
]

+ ηtE [〈∇f (xt) , ηl∇f (xt)−∆t〉]

where we further bound ηtE [〈∇f (xt) , ηl∇f (xt)−∆t〉],

ηtE [〈∇f (xt) , ηl∇f (xt)−∆t〉] = ηtE





〈

√
ηl∇f(xt),

√
ηl

m

∑

i∈St

1

Kt,i

Kt,i−1
∑

k=0

(

∇f(xt)− git−τt,i,k

)
〉



=
(i)

ηtE





〈

√
ηl∇f(xt),

√
ηl

m

∑

i∈St

1

Kt,i

Kt,i−1
∑

k=0

(

∇f(xt)−∇fi(xi
t−τt,i,k

)
)
〉



=
(ii)

ηtηl

2
E

[

‖∇f(xt)‖2
]

− ηtηl

2
E






∥
∥
∥
∥
∥
∥

1

m

∑

i∈St

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





+
ηtηl

2
E






∥
∥
∥
∥
∥
∥

∇f(xt)−
1

m

∑

i∈St

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





where (i) holds as we take conditional expectation with respect to all randomness prior to step t. (ii) holds as 〈a, b〉 =
1
2 ‖a‖

2
+ 1

2 ‖b‖
2 − 1

2 ‖a− b‖2.

We further have,



ηtηl

2
E






∥
∥
∥
∥
∥
∥

∇f(xt)−
1

m

∑

i∈St

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





=
ηtηl

2
E






∥
∥
∥
∥
∥
∥

1

m

∑

i∈St

1

Kt,i

Kt,i−1
∑

k=0

(

∇f(xt)−∇fi(xi
t−τt,i,k

)
)

∥
∥
∥
∥
∥
∥

2





≤
(i)

3

2
ηtηlE





∥
∥
∥
∥
∥

1

m

∑

i∈St

(∇f(xt)−∇fi(xt))

∥
∥
∥
∥
∥

2


+
3

2
ηtηlE





∥
∥
∥
∥
∥

1

m

∑

i∈St

(
∇fi(xt)−∇fi(xt−τt,i)

)

∥
∥
∥
∥
∥

2




+
3

2
ηtηlE






∥
∥
∥
∥
∥
∥

1

m

∑

i∈St

1

Kt,i

Kt,i−1
∑

k=0

(

∇fi(xt−τt,i)−∇fi(xi
t−τt,i,k

)
)

∥
∥
∥
∥
∥
∥

2





≤
(ii)

3

2
ηtηl

1

m

∑

i∈St

E

[

‖∇f(xt)−∇fi(xt)‖2
]

+
3

2
ηtηl

1

m

∑

i∈St

E

[∥
∥∇fi(xt)−∇fi(xt−τt,i)

∥
∥
2
]

+
3

2
ηtηl

1

m

∑

i∈St

E






∥
∥
∥
∥
∥
∥

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xt−τt,i)−∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





≤
(iii)

3

2
ηtηlσ

2
g +

3ηtηlL
2

2m

∑

i∈St

E

[∥
∥xt − xt−τt,i

∥
∥
2
]

+
3ηtηlL

2

2m

∑

i∈St

1

Kt,i

Kt,i−1
∑

k=0

E

[∥
∥
∥xt−τt,i − xi

t−τt,i,k

∥
∥
∥

2
]

where (i) and (ii) hold as ‖
∑n

i=1 xi‖2 ≤ n
∑n

i=1 ‖xi‖2, (iii) holds as fi is L-smooth.
Thus, we have,

A2 ≤ −
ηtηl

2
E

[

‖∇f(xt)‖2
]

− ηtηl

2
E






∥
∥
∥
∥
∥
∥

1

m

∑

i∈St

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





3

2
ηtηlσ

2
g +

3ηtηlL
2

2m

∑

i∈St

E

[∥
∥xt − xt−τt,i

∥
∥
2
]

+
3ηtηlL

2

2m

∑

i∈St

1

Kt,i

Kt,i−1
∑

k=0

E

[∥
∥
∥xt−τt,i − xi

t−τt,i,k

∥
∥
∥

2
]

When ηl ≤ 1
8Kt,iL

, we have,

E

[∥
∥
∥xt−τt,i − xi

t−τt,i,k

∥
∥
∥

2
]

≤ 5Kt,iη
2
l

(
σ2
l + 6Kt,iσ

2
g

)
+ 30K2

t,iη
2
l E

[∥
∥∇f(xt−τt,i)

∥
∥
2
]

We can further bound 1
m

∑

i∈St
E

[∥
∥xt − xt−τt,i

∥
∥
2
]

1

m

∑

i∈St

E

[∥
∥xt − xt−τt,i

∥
∥
2
]

≤
(i)

E

[∥
∥xt − xt−τt,u

∥
∥
2
]

= E






∥
∥
∥
∥
∥
∥

t−1∑

k=t−τt,u

(xk+1 − xk)

∥
∥
∥
∥
∥
∥

2





≤
(ii)

E






∥
∥
∥
∥
∥
∥

t−1∑

k=t−τt,u

ηkyk

∥
∥
∥
∥
∥
∥

2



 ≤

(iii)
τη2t−τt,u

t−1∑

k=t−τt,u

E

[

‖yk‖2
]

where (i) holds as we define u = argmaxi∈{1,2,...,n} E
[∥
∥xt − xt−τt,i

∥
∥
2
]

, (ii) follows from the definition of yk, (iii) holds

as bounded maximum delay assumption, i.e. τt,i ≤ τ for any t and i, and learning rate is decaying, i.e. ηt ≤ ηt−τt,u .
Merging all pieces together, we have the following,



A2 ≤ −
ηtηl

2
E

[

‖∇f(xt)‖2
]

− ηtηl

2
E






∥
∥
∥
∥
∥
∥

1

m

∑

i∈St

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2





3

2
ηtηlσ

2
g +

3ηtηlL
2

2m

∑

i∈St

E

[∥
∥xt − xt−τt,i

∥
∥
2
]

+
3ηtηlL

2

2m

∑

i∈St

1

Kt,i

Kt,i−1
∑

k=0

E

[∥
∥
∥xt−τt,i − xi

t−τt,i,k

∥
∥
∥

2
]

≤ −ηtηl

2
E

[

‖∇f(xt)‖2
]

− ηtηl

2
E






∥
∥
∥
∥
∥
∥

1

m

∑

i∈St

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2



+

3

2
ηtηlσ

2
g

+
15

2
L2ηtη

3
l K̄tσ

2
l + 45L2ηtη

3
l K̂

2
t σ

2
g + 45L2ηtη

3
l

1

m

∑

i∈St

K2
t,iE

[∥
∥∇f(xt−τt,i)

∥
∥
2
]

+
3

2
τL2ηtη

2
t−τt,u

ηl

t−1∑

k=t−τt,u

E

[

‖yk‖2
]

where K̄t ,
1
m

∑

i∈St
Kt,i and K̂2

t , 1
m

∑

i∈St
K2

t,i.

Plug all pieces back in E [f(zt+1)] ≤ f(zt) +A1 +A2 +A3,

E [f(zt+1)]− f(zt) ≤ −
ηtηl

2
E

[

‖∇f(xt)‖2
]

− ηtηl

2
E






∥
∥
∥
∥
∥
∥

1

m

∑

i∈St

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2



+

3

2
ηtηlσ

2
g

+
15

2
L2ηtη

3
l K̄tσ

2
l + 45L2ηtη

3
l K̂

2
t σ

2
g + 45L2ηtη

3
l

1

m

∑

i∈St

K2
t,iE

[∥
∥∇f(xt−τt,i)

∥
∥
2
]

+
3

2
τL2ηtη

2
t−τt,u

ηl

t−1∑

k=t−τt,u

E

[

‖yk‖2
]

+
1

2
η3tL

2

(
βtνt

1− βt

)2

E

[

‖dt‖2
]

+
1

2
ηtE

[

‖∆t‖2
]

+
L

2
η2tE

[

‖∆t‖2
]

Reorganizing terms and we have,

E

[

‖∇f(xt)‖2
]

≤ 2 (f(zt)− E [f(zt+1)])

ηtηl
− E






∥
∥
∥
∥
∥
∥

1

m

∑

i∈St

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2



+ 3σ2

g

+15L2η2l K̄tσ
2
l + 90L2η2l K̂

2
t σ

2
g + 90L2η2l

1

m

∑

i∈St

K2
t,iE

[∥
∥∇f(xt−τt,i)

∥
∥
2
]

+ 3τL2η2t−τt,u

t−1∑

k=t−τt,u

E

[

‖yk‖2
]

+
1

ηl
η2tL

2

(
βtνt

1− βt

)2

E

[

‖dt‖2
]

+
1

ηl
E

[

‖∆t‖2
]

+
L

ηl
ηtE

[

‖∆t‖2
]

Sum over all S stages and take average, by some algebraic transformations, we get,



Ḡ ,
1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

‖∇f(xt)‖2 ≤
2 (f(z0)− E [f(zT )])

SW2ηl

− ηS

SW2
E






∥
∥
∥
∥
∥
∥

1

m

∑

i∈St

1

Kt,i

Kt,i−1
∑

k=0

∇fi(xi
t−τt,i,k

)

∥
∥
∥
∥
∥
∥

2



+ 3σ2

g +
3L2τ η̂3

W2

T−1∑

t=0

t−1∑

k=t−τt,u

E

[

‖yk‖2
]

+
90η2l L

2

m

1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

∑

i∈St

K2
t,iE

[∥
∥∇f(xt−τt,i)

∥
∥
2
]

+
L2W 2

1 η̄

W2ηl

T−1∑

t=0

E

[

‖dt‖2
]

+
η̄

W2ηl

T−1∑

t=0

E

[

‖∆t‖2
]

+
Lη̂2

SW2ηl

T−1∑

t=0

E

[

‖∆t‖2
]

+15η2l L
2







1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

K̄t






σ2
l + 90η2l L

2







1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

K̂2
t






σ2
g

where η̄ = 1
S

∑S−1
s=0 ηs, η̂2 = 1

S

∑S−1
s=0 η2s , and η̂3 = 1

S

∑S−1
s=0 η3s , respectively.

When the following holds,

ηl ≤
√

1

180L2CητK
2
t,max

, ∀t ∈ {0, . . . , T − 1}

where Cη = η0

ηS
.

we could verify the following inequality,

90η2l L
2

m

1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

∑

i∈St

K2
t,iE

[∥
∥∇f(xt−τt,i)

∥
∥
2
]

≤
(i)

90η2l L
2 η0

SW2

T−1∑

t=0

K2
t,maxE

[∥
∥∇f(xt−τt,i)

∥
∥
2
]

≤
(ii)

90η2l L
2τ

η0

SW2

T−1∑

t=0

K2
t,maxE

[

‖∇f(xt)‖2
]

≤
(iii)

ηS

2SW2

T−1∑

t=0

E

[

‖∇f(xt)‖2
]

≤
(iv)

1

2

1

S

S−1∑

s=0

1

Ts

T0+···+Ts−1∑

t=T0+···+Ts−1

‖∇f(xt)‖2

where (i) follows from the definition ofK2
t,max = maxi∈{1,2,...,n} K

2
t,i, andW2 = ηsTs for all s ∈ {1, . . . , S} and ηS ≤ ηs ≤

η0. (ii) follows from the maximum delay assumption. (iii) holds by plugging in the assumption ηl ≤
√

ηS

180L2η0τK
2

t,max
, ∀t ∈

{0, . . . , T − 1}. (iv) holds as ηS

2SW2

∑T−1
t=0 E

[

‖∇f(xt)‖2
]

≤ ηS

2
1
S

∑S−1
s=0

1
Tsηs

∑T0+···+Ts−1
t=T0+···+Ts−1

‖∇f(xt)‖2 and 1
ηs
≤ 1

ηS
for

all s.

With the maximum delay assumption, we have 3L2τ η̂3

W2

∑T−1
t=0

∑t−1
k=t−τt,u

E

[

‖yk‖2
]

≤ 3L2τ2η̂3

W2

∑T−1
t=0 E

[

‖yt‖2
]

. Merging

all pieces, we have,



1
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s=0

1

Ts
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We define φ1, φ2, and φ3 for ease of notation.
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Therefore, we have,
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Suppose S = 1, i.e. the typical constant hyperparameter regime, and further suppose local updating number as K , the

total number of rounds as T , η0 = η̄ = Θ
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Only keep the dominant terms, we could get,
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Suppose S = Θ(1), i.e. the multistage regime, the total number of rounds are T , η̄ = Θ
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have the bound as,
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H Experiments

H.1 Experimental Settings

We test how the performances of our proposed algorithms compared to FedAvg baseline in different settings. We train ResNet
(He et al. 2016) and VGG (Simonyan and Zisserman 2015) on CIFAR10 (Krizhevsky 2009). To simulate data heterogeneity
in CIFAR-10, we impose label imbalance across clients, i.e. each client is allocated a proportion of the samples of each label
according to a Dirichlet distribution. Same procedure has been taken by (Hsu, Qi, and Brown 2019; Yurochkin et al. 2019;
Wang et al. 2020; Li et al. 2022). The concentration parameter α > 0 indicates the level of non-i.i.d., with a smaller α implies
higher heterogeneity, and α→∞ implies i.i.d. setting.

How Asynchrony and Heterogeneous Local Epochs Are Implemented in Autonomous FedGM?
To simulate the asynchrony, we allow each worker to select one global model randomly from the last recent 5 global models

instead of only using the current round’s model in vanilla FedAvg. To simulate the heterogeneous local epochs, we allow each
worker to randomly select local epoch number from {1, 2, . . . , 6} at each round so that each worker has a time-varying, device
dependent local epoch. Note in vanilla FedAvg, we fix the local epoch as 3.

Unless specified otherwise, we have the following default experimental settings,



Table 1: Default Experimental Settings

Number of Clients: 100 Participation Ratio: 0.05
Concentration Parameter: α = 0.5 Local Epoch: 3

Local Learning Rate: ηl = 0.01 Total Number of Rounds: 500
η Grid: {0.5, 1.0, 1.5, . . . , 5.0} β Grid: {0.7, 0.9, 0.95}

ν Grid: {0.7, 0.9, 0.95} Local Momentum: Disabled

H.2 More Experiments in Section 6.1

Different Model Architecture and Levels of Heterogeneity
Figure 3 shows the results for VGG on CIFAR-10 with FedGM, FedAvgM, and FedAvg. We perform grid search over

η ∈ {0.5, 1.0, 1.5, . . . , 5.0}, β ∈ {0.7, 0.9, 0.95}, and ν ∈ {0.7, 0.9, 0.95}. We report the curves with best final test accuracy
after 500 rounds. We could observe FedGM outperforms FedAvgM and FedAvg in both training and testing, which again
verifies our claim that general momentum is a more capable algorithm compared to FedAvgM.

0 100 200 300 400 500
Rounds

0.2

0.4

0.6

0.8

Tr
ai

n 
A

cc
ur

ac
y

FedSGD
FedAvgM
FedGM

0 100 200 300 400 500
Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

n 
A

cc
ur

ac
y

FedSGD
FedAvgM
FedGM

Figure 3: 3(a) Training and 3(b) Testing Curve for VGG on CIFAR-10.

Figure 4 shows the results for ResNet on CIFAR-10 with FedGM and FedAvg with different concentration parameters
α = 0.3 and α = 0.5 (i.e. non-i.i.d.). We perform a similar grid search as in Section 6.1. We could observe the superiority of
FedGM compared to FedAvg is consistent with different levels of non i.i.d..

Verifying Remark 4.5
Remark 4.5 hypothesizes FedGM could converge with a large η while FedAvg would diverge easily with an only moderately

large server learning rate. The reason is that η acts like a multiplier to client learning rate ηl in FedAvg, while in FedGM, β and
ν act as a buffer that could absorb the impact from a large η. We verify this remark here.

Figure 5 shows the results for ResNet on CIFAR-10 with FedAvg but different learning rates η = 1.0, η = 2.0, and η = 3.0.
We could see FedAvg experiences an unstable convergence even when η = 2.0 and completely divergent when η = 3.0.

Figure 6 shows the results for FedGM but different learning rates η = 1.0, η = 3.0, and η = 5.0. All experimental settings
are identical to Figure 5 except for the difference between FedAvg and FedGM. We could see FedGM sustains a much larger η
compared to FedAvg. It could converge and even accelerate with η = 5.0 compared to FedAvg baseline.

H.3 More Experiments in Section 6.2

Figure 7 motivates our multistage FedGM. We run ResNet on CIFAR-10 with FedGM but different learning rates η = 1.0,
η = 2.0, and η = 5.0 for 2000 rounds. We fix β = ν = 0.95 for expository purpose. We could see in early rounds (i.e. the
first 500 rounds), η = 5.0 has advantages that it converges faster than small η = 1.0. However, η = 1.0 is much more stable
than η = 5.0 in the last 500 rounds when they all get nearly perfect training accuracy. This is consistent with the motivation of
multistage FedGM, i.e. large initial η benefits exploration, while small later η benefits exploitation, and multistage scheduler
obtains a balance.

Figure 8 presents the results of running multistage FedGM for 2000 rounds, to see whether the advantage of multistage
disappears with a longer training time. The two black vertical lines at round 286 and 857 mark the end of 1st/2nd stage. As we
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Figure 4: 4(a) Training and 4(b) Testing Curve for ResNet on CIFAR-10 with Various Levels of Heterogeneity
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Figure 5: 5(a) Training and 5(b) Testing Curve for FedAvg with various server learning rates η.

could observe from Figure 8, the superiority of multistage FedGM is consistent with longer training time.

H.4 More Experiments in Section 6.3

Figure 9 shows the results for ResNet on CIFAR-10 with Autonomous FedGM and Autonomous FedAvg. The experimental
settings are exactly same as Figure 1 except the random delay is 10 instead of 5. Specifically, in Figure ?? we allow each worker
to select one global model randomly from the last recent 5 global models, while in Figure 1 we allow each worker to select
one global model randomly from the last recent 10 global models. The objective is to mimic different levels of asynchrony. We
report the curves with best final test accuracy. We plot a FedGM (i.e. no random delay and identical local epochs) as a baseline.
Similarly as Figure 1, we observe momentum is crucial as Autonomous FedGM outperforms Autonomous FedAvg with system
heterogeneity. Autonomous FedGM does experience a slowdown compared to the ideal FedGM, but the difference is within a
manageable margin, which validates the effectiveness of our proposed Autonomous FedGM.
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Figure 6: 6(a) Training and 6(b) Testing Curve for FedGM with various server learning rates η.
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Figure 7: Training Curves for FedGM with various server learning rates η. 7(a) the first 500 rounds; 7(b) the last 500 rounds.
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Figure 8: 8(a) Training and 8(b) Testing Curves for Multistage FedGM vs. Single-stage FedGM for 2000 rounds.
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Figure 9: 9(a) Training and 9(b) Testing Curve for ResNet on CIFAR-10 with Random Delay = 10.


