
29

Scheduling Hyperparameters to Improve Generalization:

From Centralized SGD to Asynchronous SGD

JIANHUI SUN, University of Virginia

YING YANG, University of Michigan

GUANGXU XUN, Baidu Research

AIDONG ZHANG, University of Virginia

This article1 studies how to schedule hyperparameters to improve generalization of both centralized single-

machine stochastic gradient descent (SGD) and distributed asynchronous SGD (ASGD). SGD augmented with

momentum variants (e.g., heavy ball momentum (SHB) and Nesterov’s accelerated gradient (NAG)) has been

the default optimizer for many tasks, in both centralized and distributed environments. However, many ad-

vanced momentum variants, despite empirical advantage over classical SHB/NAG, introduce extra hyperpa-

rameters to tune. The error-prone tuning is the main barrier for AutoML.

Centralized SGD: We first focus on centralized single-machine SGD and show how to efficiently schedule

the hyperparameters of a large class of momentum variants to improve generalization. We propose a unified

framework called multistage quasi-hyperbolic momentum (Multistage QHM), which covers a large family of

momentum variants as its special cases (e.g., vanilla SGD/SHB/NAG). Existing works mainly focus on only

scheduling learning rate α ’s decay, while multistage QHM allows additional varying hyperparameters (e.g.,

momentum factor), and demonstrates better generalization than only tuning α . We show the convergence of

multistage QHM for general non-convex objectives.

Distributed SGD: We then extend our theory to distributed asynchronous SGD (ASGD), in which a pa-

rameter server distributes data batches to several worker machines and updates parameters via aggregating

batch gradients from workers. We quantify the asynchrony between different workers (i.e., gradient stale-

ness), model the dynamics of asynchronous iterations via a stochastic differential equation (SDE), and then

derive a PAC-Bayesian generalization bound for ASGD. As a byproduct, we show how a moderately large

learning rate helps ASGD to generalize better.

Our tuning strategies have rigorous justifications rather than a blind trial-and-error as we theoretically

prove why our tuning strategies could decrease our derived generalization errors in both cases. Our strate-

gies simplify the tuning process and beat competitive optimizers in test accuracy empirically. Our codes are

publicly available https://github.com/jsycsjh/centralized-asynchronous-tuning.

1A preliminary version titled “A Stagewise Hyperparameter Scheduler to Improve Generalization” appeared in Proceedings

of the 27th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2021).

This work is supported in part by the US National Science Foundation under grants IIS-2106913, 2008208, 1955151, 1934600,

1938167. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s)

and do not necessarily reflect the views of the National Science Foundation.

Authors’ addresses: J. Sun and A. Zhang, University of Virginia, Charlottesville, VA 22904; emails: {js9gu, aidong}@

virginia.edu; Y. Yang, University of Michigan, Ann Arbor, MI 48104; email: yingyan@umich.edu; G. Xun, Baidu Research,

Sunnyvale, CA 94089; email: guangxuxun@baidu.com.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).

1556-4681/2023/03-ART29

https://doi.org/10.1145/3544782

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

https://orcid.org/0000-0003-0032-3646
https://orcid.org/0000-0003-1602-1212
https://orcid.org/0000-0002-7657-4305
https://orcid.org/0000-0001-9723-3246
https://github.com/jsycsjh/centralized-asynchronous-tuning
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3544782
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544782&domain=pdf&date_stamp=2023-03-20

29:2 J. Sun et al.

CCS Concepts: • Theory of computation→ Sample complexity and generalization bounds; • Mathe-

matics of computing→ Non-convex optimization;

Additional Key Words and Phrases: Deep learning optimization, hyperparameter tuning, SGD momentum,

multistage QHM, asynchronous SGD, generalization bound

ACM Reference format:

Jianhui Sun, Ying Yang, Guangxu Xun, and Aidong Zhang. 2023. Scheduling Hyperparameters to Improve

Generalization: From Centralized SGD to Asynchronous SGD. ACM Trans. Knowl. Discov. Data. 17, 2, Arti-

cle 29 (March 2023), 37 pages.

https://doi.org/10.1145/3544782

1 INTRODUCTION

Most machine learning and data mining tasks could be formulated as the following optimization
problem:

min
θ
R (θ) = min

θ
E(xi ,yi)∼Dlθ (xi ,yi), (1)

where θ , D, and lθ (xi ,yi) are the trainable parameter, data distribution, and loss function, respec-
tively. Generalization ability, the most important measure of learning models, depends heavily on
whether the optimizer is able to reliably find a solution of Equation (1) that could generalize well
to unseen test instances.

This article studies the hyperparameter tuning of stochastic gradient descent (SGD) and its
variants, which minimizes the objective by iteratively moving the parameters along its negative
gradient direction, in both centralized setting, where both gradient computation and parameter
updating are completed with one single processor, and distributed setting, where gradient compu-
tation is distributed among different workers who communicate with a parameter server to update
parameters. As first-order gradient is easy to compute and is evaluated only with a mini-batch of
data instances, the per-iteration computational efficiency makes SGD the top candidate in both
centralized and distributed settings.

However, centralized and distributed SGD each poses different challenges to tuning its hyperpa-
rameters, whose configuration is known to have a huge impact on the quality of solutions found
by optimizers for deep neural networks [8]. In a centralized setting, a large number of new SGD
variants which introduce more complicated updating rules than vanilla SGD and extra hyperpa-
rameters to tune, have no general tuning rules that are guaranteed to apply to a majority of cases.
There is a very limited number of SGD variants in distributed machine learning, as most variants
can not maintain their superiority over vanilla SGD as in centralized computing. However, in dis-
tributed setting, asynchrony, which indicates the inconsistent view of the optimized parameters
among worker machines when conducting local computations, makes the dynamics of SGD much
more challenging than its centralized counterpart to analyze [5] and how hyperparameters affect
SGD in even its vanilla form is still a bit of mystery. The most reliable hyperparameter tuning
strategy is thus still a comprehensive grid search, and is probably the most time-consuming part
of training. This article aims at tackling the above problems in both scenarios.

1.1 Motivation

Centralized SGD. Vanilla SGD tends to converge slowly especially when it gets closer to local
minima. Therefore, a momentum term, which incorporates past gradient estimates into the cur-
rent update, is often augmented to SGD to accelerate the convergence around stationary points,
pioneered by Polyak’s Heavy Ball momentum (SHB) [63] and Nesterov’s Accelerated Gradi-

ent (NAG) [60].

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

https://doi.org/10.1145/3544782

Scheduling Hyperparameters to Improve Generalization 29:3

SGD+momentum is the default optimizer in centralized computing as it converges faster than
vanilla SGD and generalizes better than adaptive gradient methods (e.g., Adam [39]) [77, 80]. A
large number of new momentum variants have been proposed in recent years, many of which
modify the classical SHB and NAG to accommodate more complex task-dependent objective func-
tions, and have achieved state-of-the-art performances across domains, e.g., Synthesized Nes-

terov Variants (SNV) [44], PID control [4], Triple Momentum [78], Accelerated Stochastic Gra-

dient Method (AccSGD) [38], and Quasi-Hyperbolic Momentum (QHM) [53]. However, the
influx of newly proposed momentum variants casts the following challenges on tuning:

—New momentum variants, despite their empirical superiority, often have more complex up-
dating rules than SGD/SHB/NAG and introduce more hyperparameters.

—Hyperparameters are typically not fixed throughout the entire learning process. Scheduling
hyperparameters appropriately is nearly as important as assigning the initial values to them
[80].

—A lack of unified analysis that could cover different momentum variants with one single
framework makes it difficult to learn from existing tuning strategies from SGD/SHB/NAG.

—Existing tuning strategies are mainly from a trial-and-error process with no theoretical in-
sight of the inner mechanism, which is thus tedious and error-prone.

Distributed SGD. The main enabler of recent advances in deep learning is models and data
of extreme size [15, 16, 25, 33]. Though centralized SGD and its variants, in which all gradient
computation and parameter updating are completed with one single processor, are still widely
used in most research settings, parallel and distributed computing is now the status quo in most
industrial deep learning deployments by massive companies like Google or Microsoft [12, 13],
as no single machine is able to deal with potentially billions of parameters and data instances.
A popular approach to compute on multiple machines simultaneously is “data-parallelism”, in
which data are divided into separate batches which are distributed to different worker machines
during training [19]. A parameter server keeps a record of the parameters to be optimized, di-
vides computation labors to worker machines, and aggregates computed updates from different
workers.

This article focuses on Asynchronous Stochastic Gradient Descent (ASGD). In contrast to
Synchronous SGD (SSGD) where updates only happen when all workers complete the current
round of computations, in ASGD, the parameter server updates the parameter every time some
worker completes its current assigned batch gradient computation, and propagates the new pa-
rameter only to that worker without waiting other workers (more details in Section 2.2). SSGD
enforces all processors to perform local gradient calculations with the same optimization param-
eter, which in turn makes faster machines experience significant amounts of idle waiting time.
ASGD ensures a better utilization of computational resources, while complicating the analysis of
its dynamics with the phenomenon of gradient staleness:

*Each worker calculates its batch gradient with an outdated parameter, with no knowledge
that the parameter server may have already updated the parameter several times via commu-
nicating with other faster workers. Therefore, the parameter server nearly always receives
some “delayed” gradient.

This asynchrony obfuscates our understanding of how basic hyperparameters (e.g., learning
rate and batch size) impact the generalization ability of ASGD. Considering every round of tuning
is extremely costly as ASGD usually works with data and models of massive size, this article
aims at connecting the generalization performance with hyperparameters to reduce the tuning
time.

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

29:4 J. Sun et al.

1.2 Contribution

To tackle the aforementioned challenges, this article derives a PAC-Bayesian generalization bound
for both centralized and distributed SGD. In a practical manner, this bound is able to provide an
efficient tuning pipeline to relieve practitioners of the labor-intensive tuning process and improve
the optimizer’s generalization ability at the same time.

For centralized computing, we select the multistage version of a powerful momentum scheme,
QHM [53] to analyze, as it includes many popular momentum variants as its special cases. We
propose multistage QHM in Section 4, where we adjust all involving hyperparameters stagewise,
by extending the idea that practitioners have long used to schedule learning rate in SGD, “con-
stant and drop”,2 to all hyperparameters involved in QHM (learning rate α , momentum parameter
β , instant discount factor ν , and batch size b). Existing works are unclear about how to sched-
ule (α , β,ν ,b) appropriately or whether adjustment of any of them could contribute to better
generalization.

For distributed computing, we derive a PAC-Bayesian generalization bound by modeling the
continuous-time dynamics of ASGD with stochastic differential equations (SDEs) and studying
its stationary distribution, which is the first generalization bound on ASGD to our knowledge
(see Sections 3 and 7 for details). We theoretically and empirically show how a moderately large
learning rate could help ASGD generalize better.

Our contribution could be summarized as follows:

(1) We propose practical tuning guidelines in both centralized and distributed computing environ-
ments. Our proposed methods effectively restrict the search space of hyperparameters, and
help automate the tuning process.

(2) We provide theoretical evidence on whether and why our proposed methods improve general-
izability. Our derived generalization bounds are of independent interest. To our best knowledge,
this is the first hyperparameter tuning pipeline that is applicable to a large class of optimizers
with a sound theoretical guarantee.

1.3 Article Organization

In Section 2, we introduce the background and notation. In Section 3, we elaborate the logical
framework and proof schema of deriving the generalization error, which is essential to this article,
before we move on to present our main results. In Section 4, we present our proposed approach,
multistage QHM, to tune a large class of momentum variants in centralized computing environ-
ment. In Section 5, we prove Theorem 3 to show how varying hyperparameters affect the gener-
alization bound of multistage QHM, and then based on the theoretical findings, propose the exact
paradigm for our stagewise scheduler. In Section 6, we provide the convergence guarantee for
multistage QHM optimizing non-convex objectives. In Section 7, we extend to distributed parallel
computing regime, generalize our theory to Asynchronous SGD, and show how a moderately large
learning rate helps ASGD generalize. In Section 8, extensive experiments are presented and show
the empirical advantage of our proposed tuning strategies. We discuss relevant works in Section 9.
In Section A, we provide detailed proofs that are omitted in the main text.

2 BACKGROUND

In this section, we introduce QHM, ASGD, and generalization error, which are pertinent to this
work.

2“Constant and drop” essentially divides the entire training process into several stages, where initial learning rate is set to

be large for faster convergence and held constant for a number of epochs, and is dropped with a fixed rate (or exponentially)

at the end of every stage. “Constant and drop” step size is so popular that a number of optimizers use it by default in off-shelf

softwares (e.g., PyTorch [62] or Tensorflow [1]).

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

Scheduling Hyperparameters to Improve Generalization 29:5

2.1 Centralized Quasi-hyperbolic Momentum

Let {zi = (xi ,yi)}Ni=1 represent the training set. The expected risk function is defined as R (θ) �
Ez∼Dlθ (z), where lθ (z) is the loss function associated with model parameter θ and data instance
z. Empirical risk Rζ (θ) is an unbiased estimator of the expected risk function, and is defined as

Rζ (θ) � 1
b

∑
j ∈ζ Rj (θ), where Rj (θ) � lθ (zj) is the contribution to risk from jth data point. ζ

represents a mini-batch of random samples and b � |ζ | represents the batch size. Similarly, we
define ∇θR, ∇θRj , and ∇θRζ as their gradients, respectively. We denote the empirical gradient
as д̂(θ) � ∇θRζ and exact gradient as д(θ) � ∇θR for the simplicity of notation. We assume

E[‖д̂(θ) − д(θ)‖2] ≤ σ 2 (bounded noise is a standard assumption [20, 57]).
We start from the following updating rule of SGD:

θk+1 = θk − αkdk , (2)

where αk and dk are the learning rate and search direction at kth step, respectively. (mini-batch)
SGD3 uses д̂k � д̂(θk) as dk .

We focus on QHM methods [53], which could be formulated as

dk+1 = (1 − βk)д̂k + βkdk ,

θk+1 = θk − αk [(1 − νk)д̂k + νkdk].
(3)

Note that the formulation of the QHM method is very general, and could recover many momen-
tum methods with different specifications of (αk , βk ,νk). For example, QHM recovers plain SGD
when νk = 0.

If νk = 1, QHM recovers SHB:

dk+1 = (1 − βk)д̂k + βkdk ,

θk+1 = θk − αkdk ,
(4)

where variable d is commonly referred to as the “momentum buffer”. The exponential discount
factor βk controls how slowly the momentum buffer is updated.

If νk = βk , QHM recovers NAG:

dk+1 = (1 − βk)д̂k + βkdk ,

θk+1 = θk − αk [(1 − βk)д̂k + βkdk].
(5)

From the connection between QHM and SHB, NAG, QHM could be interpreted as a νk -weighted
average of the momentum update step and the plain SGD update step. νk is referred to as an instant
discount factor.

Reference [53] showed that QHM could recover many other popular momentum schemes, e.g.,
PID control, SNV, ASGD, and Triple Momentum, with different αk , βk ,νk specifications. Therefore,
our analysis based on QHM could cover a family of momentum methods as special cases.

2.2 Distributed Asynchronous SGD

A natural extension of SGD from a single machine to multiple machines, in the data-parallel setting,
is SSGD, whose mechanism is illustrated in Figure 1(a). Specifically, there are one parameter server
and four worker machines in this toy example. Each worker machine receives two workloads dur-

ing the timeframe under consideration. Let t j
i denote the time that ith (i = 1, 2, 3, 4) machine takes

on computing jth (j = 1, 2) workload. Different worker machines take different lengths of time
when completing the first or second workload due to heterogeneous computational capacity and
job complexity. At time 0, the parameter server propagates initial parameter θ0 to each machine.

3As mini-batch GD contains “one-instance” SGD as a special case, we use “SGD” to refer to mini-batch GD throughout this

article unless specified otherwise.

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

29:6 J. Sun et al.

Fig. 1. Comparison between Synchronous SGD and Asynchronous SGD. Green blocks represent the first

round of computation jobs, and yellow blocks represent the second round of computation jobs. Grey blocks

are the periods of time when machines in SSGD wait idling. t
j
i denotes the time that ith (i = 1, 2, 3, 4)

machine takes on computing jth (j = 1, 2) workload. ASGD updates the parameter much more frequently

during the same period time than SSGD.

The parameter server will get first update from Machine C at time t1
3 . However, parameter server

will not perform any updating until t1
1 , when all machines complete their first round of computa-

tions. At T1 = t1
1 , the parameter server aggregates all four batch gradients, and updates θ0 → θ1.

Therefore, Machines B, C, and D have to experience the idle waiting time before they could receive
their second workloads.

When the number of machines goes up and the capacity across machines are heterogeneous,
synchronization on every iteration in SSGD becomes a major choke point. A much more efficient
alternative is ASGD or Hogwild!, which has been proposed in [12, 13, 61] to reduce the amount of

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

Scheduling Hyperparameters to Improve Generalization 29:7

idle time of worker machines. The idea of ASGD is illustrated in Figure 1(b). Specifically, instead
of waiting for the slowest machine in the first round (Machine A), the parameter server performs
an update θ ′0 → θ ′1 immediately when Machine C completes its job (note θ ′1 � θ1). Machine C will
receive θ ′1 and proceed to the second job without any delay. Machine A, B, and D continue their
own work and will not be notified of this progress. Apparently, in Figure 1, ASGD updates the
parameter eight times in the same period of time when SSGD only updates two times. Therefore,
ASGD is an effective approach to overcome the synchronization bottleneck, and is a more efficient
utilization of the computation resources.

However, the asynchronization in ASGD poses challenges in theoretically analyzing the speedup
and generalization performances. In SSGD, the state of parameter server is always synchronous
with worker machines at any given time, i.e., the parameter with which every worker machine
computes local batch gradients is always the same as in the parameter server. The analysis of
SSGD is thus less challenging, as it could be regarded as dismantling and redistributing the se-
quence of computed batch gradients from single-machine SGD to multiple machines. In contrast,
the main challenge of ASGD is that the parameter server always receives batch gradients from the
workers that are computed with outdated parameters. Specifically, in Figure 1(b), when Machine
B communicates with parameter server at T ′2 = t1

2 , the state of parameter server is already θ = θ ′1.
However, the batch gradient from Machine B is computed with respect to θ = θ ′0. Ideally, the pa-
rameter server should update θ ′1 → θ ′2 based on gradient calculated with θ ′1, instead of the “delayed”
gradient with respect to θ ′0. The same phenomenon applies to timeT ′3 , when the parameter server
is already at θ ′2, two steps ahead of Machine D. Therefore, at any given time, each worker machine
may have a different view of the optimization parameter. This discrepancy between parameter
server and worker machines is called “gradient staleness”.

Formally, recall the updating rule of single-machine SGD Equation (2) as follows:

θt+1 = θt − αt д̂(θt , ζt), (6)

where αt and ζt are learning rate and mini-batch at time t , respectively. д̂(θt , ζt) is the batch
gradient computed with mini-batch ζt at parameterθt . Unlike Equation (6), in ASGD, the parameter
each worker computes batch gradient with, is up to some random delay τt ∈ N,

ϕt = θt−τt
, where P (τt = l) = ql , (7)

where the random delays from different t ’s are assumed to be independent and follow a distribution
whose probability mass function is denoted by ql [59]. ϕt is the outdated parameter which the
worker machine computes gradient with. In the toy example illustrated by Figure 1(b), for instance,
at time t = T ′2 , parameter server is at θ ′1, random delay is l = 1 and ϕt = θ

′
0.

The updating rule for ASGD is given as follows:

θt+1 = θt − αt д̂(ϕt , ζt). (8)

As д̂(ϕt , ζt) is not evaluated on θt , Equation (8) introduces much more complex dynamics than
Equation (6), and thus requiring a new analysis tool to study the generalization performances.

2.3 Generalization Error for Stochastic Algorithms

Generalization to unseen data is the essence of learning, and generalization error measures the
discrepancy between the learner’s performance on training and testing environments. We now
formulate generalization bound in the PAC-Bayesian framework.

Traditional Frequentist learning paradigm views model parameter θ as fixed but unknown val-
ues and do not attach any probabilities to these learnable parameters. In contrast, Bayesian per-
spective studies a distribution of every possible setting of parameters instead of betting on one

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

29:8 J. Sun et al.

single setting of parameters to manage model uncertainty, and has proven increasingly powerful
in many applications. In the Bayesian framework, θ is assumed to follow some prior distribution
P (reflects our prior knowledge of model parameters), and at each iteration of QHM, the θ dis-
tribution shifts to {Qk }k≥0, and converges to posterior distribution Q (reflects our knowledge of
model parameters after learning withD). We further resort to Bayesian risk function to assess the
generalization bound.

R (Q) � Eθ∼QE(x,y)∼Dl (fθ (x),y),

R̂ (Q) � Eθ∼Q
1

N

N∑
j=1

l (fθ (x j),yj),
(9)

where R̂ (Q) is the risk evaluated on training set T and N � |T | is the sample size, while the
expected risk R (Q) is the expectation of the error on unseen data. The generalization bound could
therefore be defined as follows:

E � |R (Q) − R̂ (Q) |. (10)

3 LOGICAL FRAMEWORK: HOW TO DERIVE GENERALIZATION BOUND?

The main contribution of this article is to provide a hyperparameter tuning strategy in both central-

ized and distributed settings, which has rigorous justifications rather than a blind trial-and-error
as we theoretically prove why our tuning strategy could decrease our derived generalization er-
rors. How to derive a hyperparameter-dependent generalization bound is the key to our article. In
this section, we elaborate on our logical framework and proof schema to derive the generalization
error before we move on to present our main results in the next few sections.

3.1 Continuous-time Dynamics of Gradient-based Methods

A powerful analysis tool for gradient-based methods (e.g., SGD or heavy ball momentum) is to
model the continuous-time dynamics with stochastic differential equations and then study its lim-
iting behavior [24, 30, 46, 57, 81].

θt+1 = θt − αд̂(θt , ζt), (11)

Let us start from characterizing the continuous-time dynamics of using a constant step size
SGD Equation (11) to optimize the single-machine task (1). We first present the following standard
assumptions from existing studies and discuss why these assumptions stand.

Assumption 1 ([24, 57, 81] The Second-order Taylor Approximation). Suppose the risk func-

tion is approximately convex and 2-order differentiable, in the region close to minimum, i.e., there

exists a δ0 > 0, such that R (θ) = 1
2 (θ − θ ∗)TA(θ − θ ∗) if ‖θ − θ ∗‖ ≤ δ0, where θ ∗ is a minimizer of

R (θ). Here A is the Hessian matrix ∇2
θ
R around minimizer and is positive definite. Without loss of

generality, we assume a minimizer of the risk is zero, i.e., θ ∗ = 0.

Though here we assume a locally quadratic form of the risk function, all our results from this
study apply to locally smooth and strongly convex objectives. Note that the assumption on locally
quadratic structure of loss function, even for extremely non-convex objectives, could be justified
empirically. [45] visualized the loss surfaces for deep structures like ResNet [25] and DenseNet
[33], observing quadratic geometry around local minimum in both cases. And certain network
architecture designs (e.g., skip connections) could further make neural loss geometry show no
noticeable non-convexity, see e.g., Figures 2 and 3.

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

Scheduling Hyperparameters to Improve Generalization 29:9

Fig. 2. 2D visualization of the loss surface of Wide-ResNet-56 on CIFAR-10 both with shortcut connections

(right) and without (left). Image is from [45] Figure 6.

Fig. 3. 3D visualization of the loss surface of ResNet-56 on CIFAR-10 both with shortcut connections (right)

and without (left). Image is from http://www.telesens.co/loss-landscape-viz/viewer.html.

Assumption 2 ([24, 57, 81] Unbiased Gradients with Bounded Noise Variance). Suppose

at each step t , gradient noise is Gaussian with mean 0 and covariance 1
b

Σ(θt), i.e.,

д̂(θt) ≈ д(θt) +
1
√
b

Δд(θt), Δд(θt) ∼ N (0, Σ(θt)).

We further assume that the noise covariance matrix Σ(θt) is approximately constant with respect to

θ , i.e., Σ(θt) ≈ Σ = CCT . And noises from different iterates {Δд(θt)}t ≥1 are mutually statistically

independent.

Gaussian gradient noise is natural to assume as the stochastic gradient is a sum ofb independent,
uniformly sampled contributions. Invoking the central limit theorem, the noise structure could be
approximately Gaussian. Assumption 2 is standard when approximating a stochastic algorithm
with a continuous-time stochastic process (see e.g., [57]) and is justified when the iterates are
confined to a restricted region around the minimizer.

With Assumptions 1 and 2, constant-step size SGD Equation (11) could be recast as a discretiza-
tion of the following continuous-time dynamics:

dθ = −αд(θ)dt +
α
√
b
CdWt , (12)

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

http://www.telesens.co/loss-landscape-viz/viewer.html

29:10 J. Sun et al.

where dWt = N (0, Idt) is a Wiener process. Many SGD momentum variants (e.g., heavy ball mo-
mentum [63] and Nesterov’s accelerated gradient [60]) can also be cast as a modified version of
Equation (12) [20]. The stochastic process Equation (12) is known as an Ornstein–Uhlenbeck pro-
cess. The following theorem shows it has an analytic stationary distribution q(θ) that is Gaussian
and explicitly writes out the covariance structure of q(θ).

Theorem 1 (Stationary Structure of SGD [57]). The stationary distribution of stochastic pro-

cess Equation (12) is Gaussian, i.e.,

q(θ) ∝ exp
{
−1

2
θTQ−1θ

}
, where QA +AQ =

α

b
CCT . (13)

3.2 PAC-Bayesian Generalization Bound

We now introduce the classical PAC-Bayesian generalization bound.

Theorem 2 (PAC-Bayesian Generalization Bound [58, 66]). Let KL(Q | |P) be the Kullback-

Leibler divergence between distributions Q and P . For any positive real ϵ ∈ (0, 1), with probability at

least 1 − ϵ over a sample of size N , we have the following inequality for all distributions Q :

R (Q) ≤ R̂ (Q) +

√
KL(Q | |P) + log 1

ϵ
+ logN + 2

2N − 1
. (14)

The prior distribution P is typically assumed to be a Gaussian prior N (θ0, λ0Id), reflecting
the common practice of Gaussian initialization [17] and L2 regularization. The importance of
Theorem 2 is that, we could easily get an upper bound of generalization bound if we could ex-
plicitly represent KL(Q | |P), i.e., the KL divergence between posterior and prior distributions.

3.3 Roadmap for Derivation of Generalization Error

Theorem 1 gives the exact form of posterior Q , and therefore, naturally results in a generalization
bound for vanilla SGD by invoking Theorem 2. More importantly, the upper bound we obtain is
dependent on basic hyperparameters, i.e., α andb in vanilla SGD, throughQ , which is exactly what
we desire. Motivated by this result, our procedure to obtain generalization bounds for both multi-
stage QHM (Section 5) and Asynchronous SGD (Section 7) is as follows: we model the dynamics of
multistage QHM and Asynchronous SGD via a continuous-time SDE, study the limiting stationary
distribution of the corresponding stochastic process, and then derive a hyperparameter-dependent
generalization bound via Theorem 2.

4 CENTRALIZED STAGEWISE QHM

In this section, we present our proposed approach, stagewise QHM, to tune a large class of mo-
mentum variants in centralized computing environment.

One of the most effective hyperparameter scheduling rules is “constant and drop”. “Constant
and drop” is the de-facto learning rate scheduler in most large-scale neural networks [40, 71, 77].
In its vanilla SGD version (a.k.a. multistage SGD), with a prespecified set of learning rates {αi }Mi
and training lengths {Ti }Mi (often measured by a number of iterations/epochs), the learning process
is divided into M stages, and at ith stage SGD(αi) is applied for Ti iterations/epochs.

The logic behind “constant and drop” is: a large but constant step size allows for faster conver-
gence than diminishing step size in the early stage of training. However, constant step size SGD (or
its variants) will only fluctuate in a local region around the minimum according to some station-
ary distribution instead of converging directly to the minimum itself [57]. Therefore, in “constant
and drop” paradigm, a large learning rate is held constant for a reasonably long period to take

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

Scheduling Hyperparameters to Improve Generalization 29:11

advantage of faster convergence until it reaches a stationary distribution around minimizer (or
to a stage where it is sufficiently close to minimizer), and then the learning rate is dropped by a
constant factor (or exponentially in some cases) for more refined training.

Algorithm 1 extends “constant and drop” to a large class of momentum variants. As momentum
variants are more predominantly used than vanilla SGD, Algorithm 1 characterizes most real-world
training. Note it recovers multistage SGD whenνi = 0, multistage SHB whenνi = 1, and multistage
NAG when νi = βi .

ALGORITHM 1: Multistage QHM

Input: Objective function R (θ), initialization θ0, number of stages M , triplets of QHM specification

{αi , βi ,νi }Mi=1, training lengths {Ti }Mi=1, batch sizes {bi }Mi=1;

1 for i ∈ {0, 1, . . . ,M − 1} do

2 update θi,0 ← θi ;

3 for k ∈ {0, . . . ,Ti − 1} do

4 Sample a mini-batch ζk = {(x j ,yj)}bi

j=1 from training data uniformly (ζk also refers to the index

set of the sampled data points if not specified otherwise);

5 Compute gradient of objective function based on ζk , i.e., д̂k =
1

bi

∑
j ∈ζk
∇Rj (θi,k);

6 Compute dk = (1 − βi)д̂k + βidk−1, with d0 = 0;

7 Update θi,k+1 ← θi,k − αi [(1 − νi)д̂k + νidk];

8 end

9 update θi+1 ← θi,Ti
;

10 end

11 return θM

Note existing works and most off-shelf implementations only allow αi and Ti to vary across
stages, while fixing (βi ,νi) and bi as constants [50, 80]. Algorithm 1 is much more flexible. Based
on our results, fixing βi and bi is suboptimal. In Section 5, we will provide theoretical justifica-
tions. In Section 8, we show our (βi ,bi) scheduler achieves non-trivial advantages over existing
schedulers.

5 HOW TO TUNE MULTISTAGE QHM?

It is well known that optimization hyperparameters have a substantial impact on the quality of the
training process and generalizability for deep neural networks. Algorithm 1 has a large number
of hyperparameters: stage-varying learning rate {αi }Mi=1, momentum parameter {βi }Mi=1, instant

discount factor {νi }Mi=1, and batch size {bi }Mi=1, to name a few.
Apparently, a grid search on such a large space of hyperparameters in Algorithm 1 is computa-

tionally infeasible even with substantial resources. This section will discuss how to configure these
hyperparameters for better generalization. In Section 5.1, we will theoretically connect the gener-
alization error of QHM with these hyperparameters. Section 5.2 explains how to tune to decrease
the generalization error in practice.

5.1 Generalization Theorem

The connection between generalization error and hyperparameters, especially momentum-related
parameters, is barely studied in existing works. We represent the generalization error as a function
of hyperparameters in the following theorem.

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

29:12 J. Sun et al.

Theorem 3. Assume the risk function is locally quadratic, and gradient noise is Gaussian (i.e.,

Assumptions 1 and 2).4 Suppose the prior distribution of parameters is N (θ0, λ0Id) with some con-

stant θ0 and λ0, where d represents the dimension of parameters. For any positive real ϵ ∈ (0, 1), the

following upper bound of generalization error holds with probability at least 1 − ϵ ,

R (Q) − R̂ (Q) ≤
√

C1 +C2 (α , β,ν ,b)

2N − 1
,

where

C1 =
1

2λ0
‖θ0‖22 +

1

2
d log λ0 −

1

2
d − 1

2
log det(ΣA−1) + log

1

ϵ
+ logN + 2,

C2 (α , β,ν ,b) = −1

2
d log

α

2b
+
α tr(ΣA−1)

4λ0b
+
α2tr(Σ)

4λ0b

(4ν2 − 2ν − 1)β2 − 2νβ + 1

2(1 − β2)
.

(15)

where det and tr indicate the determinant and trace of a matrix, respectively.

Proof. We defer the proof to Appendix. Here we introduce a key lemma that the proof relies
on, �

Lemma 1 (Stationary Distribution of QHM Iterates). θ optimized by QHM will converge

to a stationary distribution exp{− 1
2θ

T Σθθ }. Furthermore, the trace and determinant of Σθ fulfill the

following equalities:

tr(Σθ) =
α

2b
tr(ΣA−1) +

α2

2b

(
νβ

1 − β

(
1 − 2(1 + β − νβ)

1 + β
+

1

2

))
tr(Σ) +O (α3)

det(Σθ) =
(α

2b

)d

det(ΣA−1) +O (α2).

(16)

We prove Lemma 1 in Appendix. This lemma essentially gives the posterior distribution Q of
QHM iterates. Based on the idea we elaborate in Section 3, we only need to explicitly calculate
the KL divergence between its prior distribution P and Q in order to get the generalization bound.
Please refer to the Appendix for complete proof details.

In Theorem 3, generalization error is upper bounded by C1 plus C2, where C2 is a function of
hyperparameters of interest, i.e., (α , β,ν ,b), while C1 is constant determined only by sample size
and initialization. As our concentration is to study how varying (α , β,ν ,b) affects generalization
error, we mainly focus on C2 in the rest of the article. Further notice only the last term in C2

includes (β,ν). Let us denote the last term as H for ease of notation:

H �
α2tr(Σ)

4λ0b

(4ν2 − 2ν − 1)β2 − 2νβ + 1

2(1 − β2)
.

5.2 Hyperparameters Scheduling Scheme

We discuss how exactly Theorem 3 guides us to tune multistage QHM.

4The assumption is standard when approximating a stochastic algorithm with a continuous-time stochastic process (see

[20, 24, 57]) and is justified when the iterates are confined to a restricted region around the minimizer. See Section 3 for

details.

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

Scheduling Hyperparameters to Improve Generalization 29:13

5.2.1 Decay learning rate, while keeping bi

αi
Non-increasing. The following Corollary explains

the role of bi

αi
on each training stage:

Corollary 5.1. The impact of b
α

could be summarized as follows:

(1) If the model sized (i.e., number of parameters) is larger5 than
α tr(ΣA−1)

2λ0b
+2H , smaller b

α
produces

smaller generalization error.

(2) If b
α

is fixed as constant, smaller α produces smaller generalization error.6

Proof. The first statement is shown by calculating the derivative ofC2 w.r.t. s = b
α

. The second
statement is obvious by setting b = sα for some constant s , and substitute into C2. �

Learning rate decay is a general consensus for most optimizers, including SGD variants [64] and
adaptive gradient methods (e.g., Adam or RMSProp) [39]. However, it is less understood whether
batch size should adjust alongside learning rate. Most off-shelf softwares hold it constant through-
out the entire training process, for which Corollary 5.1 shows to be suboptimal.

References [21, 71] propose to scale batch size with learning rate as well (a.k.a. linear scaling
rule), but in an increasing direction, for SHB and NAG. It is mainly to take advantage of the speedup
of large-batch training, but with a slight sacrifice in testing accuracy. Our Theorem 3 justifies why
linear scaling rule is reasonable, and also explains why linear scaling rule (in its increasing version)
hurts generalization.

Specifically, the first statement in Corollary 5.1 indicates clearly if we fix batch size, decaying
learning rate would hurt generalization. But if we decay batch size faster than learning rate, i.e.,

decrease bi

αi
, (or at least adjust batch size proportionately to learning rate, i.e., keep bi

αi
constant),

decaying learning rate would actually improve generalizability according to the second statement

in Corollary 5.1. Undershrinkage of batch size (bi

αi
increases with i) negatively impacts the

generalization of multistage QHM in theory, and empirical experiments in Section 8 support our
finding.

Corollary 5.1 also gives us insights into how we should set initial batch sizeb1 and initial learning

rate α1. In order to maintain a smaller bi

αi
, we should select larger α1 as long as the optimizer still

converges, and smaller b1 as long as running time does not exceed the time budget.

5.2.2 Increase Momentum Parameter, while Keeping Instant Discount Factor νi Constant. In the
original article of QHM [53], the authors proposed to set (β = 0.999,ν = 0.7) throughout the entire
learning process and achieved impressive improved training in a variety of settings. The following
corollary provides a better configuration which beats (β = 0.999,ν = 0.7) in generalization ability.

Corollary 5.2. H (β → 1,ν = 0.5) � H (β = 0.999,ν = 0.7), and consequently, (β → 1,ν = 0.5)
decreases the generalization error.

Proof. The proof is obvious by simply substituting (β,ν) into H .7 �

5Modern large-scale deep learning models are often extremely overparameterized, with d ranging from tens to hundreds

of millions (e.g., VGG [67] and ResNet [26]), and this condition is easily fulfilled.
6[24] shows a similar bound as Theorem 3, but does not consider momentum parameters (β, ν); and notably, it only

includes the first order term of learning rate O (α). The second statement of this Corollary could not be obtained with their

first-order bound, and we will show in Section 8 that such difference is empirically non-trivial.
7Note that when β → 1, H could be negative, but it does not indicate a negative generalization error as it is only one term

of the generalization error.

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

29:14 J. Sun et al.

Setting a β that is close to 1 is commonplace in practice (e.g., PyTorch SGD+momentum sets
β = 0.9 by default). For SHB and NAG, [71, 77] also propose a scheduler for β to increase, to ensure
faster convergence. However, it does not apply to QHM, as the convergence rate for QHM is much
more complex, even for quadratic objective functions (see Theorem 3 in [20]). The convergence
rate is not a monotone function of β . Therefore, increasing β does not necessarily guarantee faster
convergence for all momentum schemes covered by QHM formulation.

However, the generalization bound in Theorem 3 is a monotonically decreasing function of β
when fixing ν = 0.5. Therefore, adopting an increasing {βi }Mi=1 is justified for better generalization
performance.

5.2.3 Increase Length of Training TimeTi . As the step size is getting smaller, it is natural to allow
a longer training time in later stages than in earlier stages. Therefore, we adopt the widespread
tuning strategy here, i.e., keeping Tiαi as a constant.

5.2.4 Tuning Strategies for Multistage QHM. Combining everything together, suppose the drop-
ping rate of step size is 0 < r < 1, the dropping rate of batch size is 0 < rb ≤ r < 1 (i.e., batch size
decreases faster than or proportionately to step size), for all 1 ≤ i ≤ M , our tuning paradigm for
Algorithm 1 is as follows:

αi = r
i−1α1, bi = r

i−1
b b1, Ti =

(
1

r

) i−1

T1, νi =
1

2
,

βi = 1 − 1

1 +
(

β1

1−β1

) (
1
r

) i−1
, β2Ti

i ≤ 1

2
.

(17)

In practice, a popular choice of r is 1
2 . rb could be set as 1

2 for convenience (Section 8.1.1 shows
smaller rb only exhibits marginal advantage). β1 and T1 could just select the default values of
software implementation. Our β scheduler βi = 1 − 1

1+(
β1

1−β1
)(1

r)i−1
ensures the increasing trend of

βi . Condition β2Ti

i ≤ 1
2 ensures Ti not to be extremely small. Note that even with βi as large as

0.999, this condition stands ifTi is more than 500 iterations, which is much smaller than the typical
number of iterations we run in practice. Therefore, this condition is easily fulfilled. b1 should be
set as small as our running time budget allows us to boost generalization, while α1 needs to be
large as long as the optimizer still converges.

With Equation (17), we only have to manually search α1, and Corollary 5.1 further indicates, we
only need to search α1 monotonically. For example, if we have a grid α = (0.01, 0.02, 0.03, . . . , 1.0)
as usual, we only need to start from 0.01, increase α , and stop immediately when the next (or next
few) grid values does not give us a better test accuracy. This further decreases our search space, as
we do not need to try out every possible value in a large grid.

6 CONVERGENCE OF MULTISTAGE QHM

In this section, we will provide the convergence guarantee of our multistage QHM, for general
non-convex objective functions.

Theorem 4. Suppose R (θ) is L-smooth and not necessarily strongly convex. We optimize R (θ)
using Algorithm 1 with hyperparameters specified as in Equation (17). Let NT =

∑M
i=1Ti be the

total number of iterations in M-stage training. Denote the expected gradient square as {Gk �
E[‖дk ‖2]}k≤N . We define the average expected gradient square at ith stage as Ḡi �
1

Ti
ΣT1+T2+· · ·+Ti

k=T1+T2+· · ·+Ti−1+1
Gk and the average expected gradient square of all M stages as Ḡ � 1

M

∑M
i=1 Ḡi .

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

Scheduling Hyperparameters to Improve Generalization 29:15

DenoteW1 �
αi βi νi

1−βi
andW2 � Tiαi for all i ≤ M . Under mild regulatory conditions,8 we would have:

Ḡ ≤ εd + εs,

εd =
2(R (θ1) − R∗)

MW2
,

εs =
1

M

M∑
i=1

����1 + 24
β2

i ν
2
i

(1 − βi)2

β1√
βM + β

2
M

+
6 + 2β2

i ν
2
i

1 − β1

����αiLσ
2.

(18)

Remark 6.1 (Non-convex Objective). In Theorem 4, we only require the objective function to be
smooth. Many existing works further require the objective function to be strongly convex [20]. As
in neural network optimization, strongly convexity may not hold for highly over-parameterized
neural networks (see [49]). Therefore, our settings are more general.

Remark 6.2 (εd and εs). εd and εs reflect two driving forces of error, εd is the deterministic ap-
proximation error, representing the iterates get closer to the minima. It will diminish with a larger
number of stages M or a larger number of iterations {Ti }. However, εs is the irreducible stochastic
error, describing the fluctuation around the minima due to gradient noise. And specifications of
(βi ,νi) affect the radius of stationary distribution εs.

Proof. Due to the page limit, we defer details to Appendix and only provide a proof sketch
here. Let (αk , βk ,νk) denote the hyperparameters at kth iteration. Recall the formulation of QHM
(Equation (3)). Denote the update sequence yk � θk+1 − θk . Vanilla SGD is easier to handle as it
updates −αkд̂k every step. However, in QHM, yk � −αkд̂k . We construct an auxiliary sequence
{ηk }k ∈N, such that ηk+1 − ηk = −αkд̂k [50]. {ηk }k ∈N is devised as follows:

ηk =
⎧⎪⎨⎪⎩
θk k = 1

θk − αk βk νk

1−βk
dk−1 k ≥ 2

, (19)

where d0 = 0. It is not difficult to verify ηk+1 − ηk = −αkд̂k :

ηk+1 − ηk = θk+1 −W1dk − (θk −W1dk−1)

= yk −
αkβkνk

1 − βk
(dk − dk−1)

= −αk

(
(1 − νk)д̂k + νkdk

)
− αkβkνkд̂k−1 + αkβkνkdk−1 = −αkд̂k .

{ηk }k ∈N is more similar to vanilla SGD iterates and thus easier to deal with. We then study the
property of {ηk }k ∈N and its connection to {θk }k ∈N. Given the gradient sequence {д̂k }k ∈N, set:

ak,i =
⎧⎪⎨⎪⎩

1 − βkνk i = k

νk (1 − βi)
∏k

j=i+1 βj i < k
. (20)

It is not difficult to verify yk = Σk
i=1ak,iд̂i with d0 = 0. Therefore, E[yk] = Σk

i=1ak,iдi . We then have
a key lemma on the variance of QHM updating vector yk , and the deviance between updating
vector yk and дk , before showing Theorem 4:

8Theorem 4 does need some mild regulatory conditions that mainly constrains the size of α and β . It requires W1 =
1

48
√

2L
,

i.e., step size could not be too large; and
1−β1

β1
≤ 12

1−βM√
βM+β 2

M

, i.e., {βi } could not be increased too fast. These regulatory

conditions could be fulfilled by typical value assignment (e.g., starting from β1 = 0.9, and dropping step size by rate 1
2).

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

29:16 J. Sun et al.

Lemma 2. We have the following two inequalities: V[yk] ≤ (6 − 4β1 − 4βkνk + 2β2
k
ν2

k
)σ 2, and

E[‖дk − 1

1−νk
∏k

i=1 βi
Σk

i=1ak,iдi ‖2] ≤ Σk−1
j=1

νk β
k−j

k
L2

1−νk
∏k

i=1 βi
(k − j +

βk

1−βk
)E[‖θ j+1 − θ j ‖2].

Please see Appendix for further steps. �

7 HOW TO TUNE ASYNCHRONOUS SGD?

In this section, we extend to distributed parallel computing regime, generalize our theory to ASGD,
and show how a moderately large learning rate helps ASGD generalize.

Theorem 5 (Generalization Error of ASGD). Assume the risk function is locally quadratic,

and gradient noise is Gaussian. Suppose the prior distribution of parameters isN (θ0, λ0Id) with some

constant θ0 and λ0, where d represents the dimension of parameters. Considering a total number of M
working machines performing ASGD, under mild assumptions on random staleness and work process,

for any positive real ϵ ∈ (0, 1), the following upper bound of generalization error holds with probability

at least 1 − ϵ ,

R (Q) − R̂ (Q) ≤
√

C1 +C2 (α ,M,b)

2N − 1
,

where

C1 =
1

2λ0
‖θ0‖22 +

1

2
d log λ0 −

1

2
d − 1

2
log det(ΣA−1) + log

1

ϵ
+ logN + 2,

C2 (α ,M,b) = −1

2
d log

α

2(M − 1)b
+

α tr(ΣA−1)

4λ0 (M − 1)b
.

(21)

Let r = b
α

, if d ≥ tr(ΣA−1)
2(M−1)λ0r

, we have ∂C2

∂r
> 0, i.e., a relatively small r = b

α
(i.e., a moderately large

α) improves the generalization of ASGD.

Before we proceed to the proof of Theorem 5, we have the following two remarks on the as-
sumptions and the theorem’s practical implication.

Remark 7.1 (Mild Assumptions on Random Staleness and Work Process). In Theorem 5, we do re-
quire some assumptions on staleness distribution and work process. These assumptions are stan-
dard in the literature on asynchronous SGD (see e.g., [3, 59]).

—The staleness process, (τt)t , and the sample selection process, (ζt)t , are mutually
independent.

—Denote the job at step t takes the system Wt time to compute. We assume an exponential,
independent work process (Wt)t , i.e., Wt ∼ exp(λ) and (Wt)t are mutually independent,
where λ is the parameter for the exponential distribution.

The first assumption is valid on most neural network architectures that perform dense updates
(e.g., CNN-based models), where the randomness in staleness comes from implementation and
system behavior that have absolutely nothing to do with sampling process. The second assump-
tion simplifies the queuing model that distributed computing center typically employs and such
approximation proves to be satisfactory empirically [59]. These two assumptions are mild and
widely used in the existing literature.

Remark 7.2 (Moderately Large Step Size Helps ASGD to Generalize). The second statement of
Theorem 5 indicates, if the number of parameters d is sufficiently large (which is easily fulfilled
for modern large-scale models with millions or billions of parameters), ASGD benefits from a
relatively large learning rate. Such positive relationship is very important to practitioners, as it
confirms that we only need to search initial α for ASGD monotonically as in multistage QHM (see

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

Scheduling Hyperparameters to Improve Generalization 29:17

Section 5 for details). With Theorem 5, if we have a search grid for α , we only need to start from
smallest possible value in this grid, increase incrementally, and stop immediately when the next
(or next few) grid value does not give us a better test accuracy, which ensures we do not have to
try out every possible value in a large grid. However, the condition for the positive relationship to
happen, is that α has to be small enough such that the ASGD algorithm still converges.

Proof. We now prove Theorem 5 and the proof itself reveals how we use the idea in Section 3.
Basically, we model ASGD’s expected iterates as a momentum-like process, calculate its stationary
distribution, and compute the PAC-Bayesian bound via Theorem 2.

The proof of this theorem relies on the following two lemmas on the average behavior of ASGD
iterates, and stationary distribution of momentum,

Lemma 3 (Behavior of Asynchrony [59]). Consider we have M asynchronous workers. Under

the same mild assumptions on random staleness and work process as in Theorem 5, the expected update

takes the following updating form:

E[θt+1 − θt] =
(
1 − 1

M

)
E[θt − θt−1] − 1

M
αE[д(θt)], (22)

or equivalently, the asynchrony induces an implicit momentum.

Lemma 4 (Stationary Distribution of Momentum [57]). Consider the following updating rule

of heavy ball momentum:

vt+1 = (1 − μ)vt − αд̂(θt) θt+1 = θt +vt+1. (23)

The continuous-time dynamics of Equation (23) can be described by the following stochastic differen-

tial equation, under the assumption that the risk function is locally quadratic, and gradient noise is

Gaussian:

dv = −μvdt − αAθdt + 1
√
b
αCdW , dθ = vdt . (24)

θ optimized by Equation (23) will converge to a stationary distribution exp{− 1
2θ

T Σθθ }, and Σθ fulfills

the following equation:

ΣθA +AΣθ =
α

μb
CCT
. (25)

We defer the proof of Lemmas 3 and 4 to Appendix. Let us elaborate how we could use these
two lemmas to show Theorem 5.

The density of prior and posterior distributions is given as follow:

fP =
1√

2π det(λ0Id)
exp

{
− 1

2
(θ − θ0)T (λ0Id)−1 (θ − θ0)

}
,

fQ =
1√

2π det(Σθ)
exp

{
− 1

2
θT Σ−1

θ θ
}
, where ΣθA +AΣθ =

α

(M − 1)b
CCT .

(26)

We calculate their KL(Q | |P) as follows:

KL(Q | |P) =

∫ (
1

2
log
|λ0Id |
|Σθ |

− 1

2
θT Σ−1

θ θ +
1

2
(θ − θ0)T (λ0Id)−1 (θ − θ0)

)
fQ (θ)dθ ,

=
1

2

{
tr

(
(λ0Id)−1Σθ

)
+ θT

0 (λ0Id)−1θ0 − d + log
|λ0Id |
|Σθ |

}
,

=
1

2λ0
θT

0 θ0 −
d

2
+
d

2
log λ0 +

1

2λ0
tr(Σθ) − 1

2
log|Σθ |. (27)

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

29:18 J. Sun et al.

Starting from ΣθA +AΣθ =
α

(M−1)b Σ, we could get:

ΣθA +AΣθ =
α

(M − 1)b
Σ,

Σθ +AΣθA
−1 =

α

(M − 1)b
ΣA−1,

tr(AΣθA
−1 + Σθ) =

α

(M − 1)b
tr(ΣA−1),

where, tr(AΣθA
−1 + Σθ) = tr(AΣθA

−1) + tr(Σθ) = tr(ΣθA
−1A) + tr(Σθ) = 2tr(Σθ),

Thus, tr(Σθ) =
α

2(M − 1)b
tr(ΣA−1).

(28)

Σθ andA are both covariance matrices, which makes it natural to assume they are both symmetric.
Therefore, we have,

ΣθA +AΣθ =
α

(M − 1)b
Σ, 2ΣθA =

α

(M − 1)b
Σ, Σθ =

α

2(M − 1)b
ΣA−1,

det(Σθ) = det

(
α

2(M − 1)b
ΣA−1

)
=

(
α

2(M − 1)b

)d

det(ΣA−1),

log det(Σθ) = log ��
(

α

2(M − 1)b

)d

det(ΣA−1)�� , (29)

= −d log

(
2(M − 1)b

α

)
+ log det(ΣA−1).

Therefore, we could get KL(Q | |P) as follows:

KL(Q | |P) =
1

2λ0
θT

0 θ0 −
d

2
+
d

2
log λ0 +

1

4λ0

α

(M − 1)b
tr(ΣA−1)

+
d

2
log

(
2(M − 1)b

α

)
− 1

2
log det(ΣA−1). (30)

Plugging Equation (30) back into Theorem 2, we could consequently obtain,

R (Q) − R̂ (Q) ≤
√

C1 +C2 (α ,M,b)

2N − 1
,

where

C1 =
1

2λ0
‖θ0‖22 +

1

2
d log λ0 −

1

2
d − 1

2
log det(ΣA−1) + log

1

ϵ
+ logN + 2,

C2 (α ,M,b) = −1

2
d log

α

2(M − 1)b
+

α tr(ΣA−1)

4λ0 (M − 1)b
.

(31)

Denote r = b
α

,

C2 (r ,M) =
1

2
d log(2(M − 1)r) +

tr(ΣA−1)

4λ0 (M − 1)r
,

∂C2

∂r
=

d

2r
− 1

4λ0

1

(M − 1)

1

r 2
tr(ΣA−1), (32)

=
2(M − 1)λ0rd − tr(ΣA−1)

4(M − 1)λ0r 2
,

if d ≥ tr(ΣA−1)

2(M − 1)λ0r
, we have

∂C2

∂r
> 0. �

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

Scheduling Hyperparameters to Improve Generalization 29:19

Table 1. Experimental Settings of Table 2

Settings b1 r rb M

Multistage 256 0.5 0.5 3

Medium Initial Batch 512 0.5 0.5 3

Large Initial Batch 1,024 0.5 0.5 3

Batch Undershrinkage 256 0.1 0.5 3

Batch Overshrinkage 256 0.9 0.5 3

All settings use the same QHM optimizer (β1 = 0.9, ν = 0.5,

M = 3), but with different batch size schedulers.

8 EXPERIMENTS

We divide our experimental evaluations into two parts. In Section 8.1, we present the empirical
evidence of the effectiveness of multistage QHM, while in Section 8.2, we show how a moderately
large learning rate helps two different distributed SGD generalize. All the experiments could be
reproduced with our public code repository.9

8.1 Evaluation of Multistage QHM

In this section, we present our empirical experiments to analyze the performance of our proposed
multistage QHM.

We first study how our scheduler affects the training and generalization of a CIFAR-10 image
classification task. We fit the model which achieves state-of-the-art performance in various clas-
sification benchmarks, ResNet, with different optimizers and tuning schemes. We tried 110-layer
ResNet with pre-activation (PreAct-ResNet-110) [27], and 20-layer ResNet with no pre-activation
(ResNet-20) to ensure the robustness with varying model size. All experiments are run with
NVIDIA Quadro RTX 8000 GPU.

8.1.1 Batch Size Scheduler. We start from hyperparameter {bi }Mi=1 (i.e., batch size), which is held
constant throughout the entire learning process in most of the existing optimizers. We fit PreAct-
ResNet-110 on CIFAR-10 and run for 75 epochs. We report the test accuracy after 75 epochs for
each batch scheduler. Please refer to Table 1 for our experimental settings. “Overshrinkage” refers
to faster batch size decay than step size decay, and “undershrinkage” refers to the opposite scenario.
We present our results in Figure 4 and Table 2.

Table 2 is in accordance with our claim in Section 5.2. At any given initial learning rate, when
batch size decays at least as fast as learning rate, both training loss and test accuracy are better
than other schedulers by a non-trivial margin. Though overshrinkage mostly gets slightly better
generalization result, we do see a less stable and more bumpy learning curve in Figure 4. Therefore,
we suggest overshrinkage only has a marginal advantage and we could set rb = r for training with
more stability.

8.1.2 ν Scheduler. We then study the effect of ν in generalization ability. ν does not appear
in some optimizers (e.g., SGD/NAG/SHB). [53] proposed a ν = 0.7 based on empirical experience
and achieved state-of-the-art performance in one classification benchmark with such specification.
Based on our generalization theorem in Section 5.1, we suggest a ν = 0.5 in the multistage QHM
paradigm. We report our result when training ResNet-20 on CIFAR-10 for 50 epochs with QHM in
Figure 5. All hyperparameters are exactly the same except for initial step size and ν .

9https://github.com/jsycsjh/centralized-asynchronous-tuning.

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

https://github.com/jsycsjh/centralized-asynchronous-tuning

29:20 J. Sun et al.

Fig. 4. Training curve and test accuracy of various batch size schedulers. Baseline is multistage QHM.

Table 2. The Effect of Batch Size Scheduler on Deep Models (PreAct-ResNet-110 on CIFAR-10)

α1 Multistage Medium Initial Large Initial Undershrinkage Overshrinkage

0.05 73.9% 66.0% 54.4% 52.6% 82.1%

0.10 81.7% 74.6% 64.3% 62.9% 84.6%

0.15 83.2% 78.1% 70.2% 70.2% 85.3%

0.20 84.2% 81.2% 72.5% 75.0% 84.9%

0.25 85.6% 81.4% 77.6% 77.0% 87.3%

0.30 85.3% 83.1% 78.9% 76.7% 83.3%

The pattern is consistent with our theoretical findings in Section 5: (i) batch size should decrease at least as

fast as learning rate; (ii) initial batch size b1 should be small; (iii) α1 should be searched monotonically.

We could observe different ν affect generalization ability at any of the given initial step sizes. It
could be seen in Figure 5(a) that training curves are quite mixed together and no obvious training
advantage could be detected from ν = 0.7 to ν = 0.5. However, ν = 0.5 is better than ν = 0.7 in
the test accuracy by a large margin. The gradual increase in accuracy from a smaller initial step
size to a larger initial step size again supports our monotone searching method.

8.1.3 Learning Rate Scheduler. From Table 2, it is clear that a larger initial learning rate α1 could
boost test accuracy (only if α1 is not too large to diverge). In Table 3, we show test accuracy after
running for 75 epochs with different optimizers (learning curves flatten long before 75 epochs in all
cases). As QHM covers many optimizers as special cases, it is expected in Table 3 that the two most
popular momentum variants SHB and NAG also satisfy this trend. And interestingly, Adam [39]

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

Scheduling Hyperparameters to Improve Generalization 29:21

Fig. 5. Training curve and test accuracy of different ν settings.

Table 3. The Effect of Initial Learning Rate α1 on

Deep Models (PreAct-ResNet-110 on CIFAR-10)

α1 NAG α1 SHB α1 Adam

0.005 84.1% 0.10 81.3% 0.001 86.6%

0.010 86.7% 0.20 84.9% 0.002 87.3%

0.015 87.8% 0.40 87.2% 0.004 87.8%

0.020 87.8% 0.80 87.9% 0.008 88.8%

0.025 88.6% 1.60 88.7% 0.016 89.5%

The pattern indicates momentum schemes could search

α1 monotonically.

optimizer, which is not characterized by QHM formulation, also exhibits better generalizability
with an increasing initial step size. The reason why the appropriate range of step size varies for
different algorithms is that each optimizer’s effective step size is scaled differently [20, 80]. The test
accuracy’s positive relationship with initial step size helps us to simplify the procedure to search
for α1. For a given search space, the practitioner does not have to try out every possible value of
α1. Instead, he could start from the smallest to largest α1, and stop when the next possible α1 does
not give a better test result, which shortens the tuning time.

We fit a shallow logistic regression on MNIST and a deep Preact-ResNet-110 [27] on CIFAR-10.
We sweep a large range of batch size and learning rate. We could observe in Figures 6 and 7, only
deep model will exhibit apparent learning rate/batch size impact, while shallow model does not.
This is exactly consistent with our theoretical finding in Corollary 5.1, where we point out that
only deep models will require the linear scaling rule between learning rate and batch size.

Fine-tuning is commonly used in real-world deployment, where the model is pretrained with
some large source data by institutions possessing sufficient computational resources, then prac-
titioners download the pre-trained models and only retrain a part of the model. In order to see
whether our derived training guidelines work also in fine-tuning, We pretrain with ImageNet and
then fine-tune the model on Aircraft [56] dataset. We test ResNet, VGG, DenseNet with SGD, SHB,
NAG, and PID (kP = −0.1 and kD = 3.0). We sweep through a large range of α from 10−5 to 10−3

and report the test performance in Table 4. In all scenarios, larger α ensures better generalization
consistently.

Deep learning models are susceptible to adversarial attacks and adversarial training is a popular
approach to generating robust models. In order to see whether our proposed guidelines work with
robust models, we test on CIFAR10 with SENet/ResNet trained by Projected Gradient Descent

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

29:22 J. Sun et al.

Fig. 6. We fit a shallow logistic regression on MNIST. The optimizer is SHB with ν = 1 and β = 0.9. We sweep

a large range of batch size and learning rate. It is straightforward to see batch size and learning rate does

not have much influence on the test performance.

Fig. 7. We fit a deep Preact-ResNet-110 [27] on CIFAR-10. The optimizer is SHB with ν = 1 and β = 0.9. We

sweep a large range of batch size and learning rate. In contrast to Figure 6. It is straightforward to see batch

size and learning rate have much influence on the test performance.

Table 4. We Pretrain with ImageNet and then Fine-tune the Model on Aircraft [56] Dataset

α ResNet+SGD VGG+SGD DenseNet+SGD ResNet+SHB ResNet+NAG ResNet+PID

1e-05 1.50% 2.40% 1.32% 17.85% 16.02% 1.68%
2e-05 3.03% 6.51% 2.31% 32.37% 29.64% 2.49%
4e-05 6.78% 17.19% 5.55% 51.67% 52.87% 6.78%
5e-05 9.60% 23.21% 6.72% 59.23% 60.55% 8.97%
6e-05 10.68% 31.62% 9.81% 65.38% 65.53% 11.43%
8e-05 15.39% 46.44% 14.91% 71.11% 71.77% 14.46%
1e-04 20.43% 53.17% 18.96% 73.51% 73.63% 17.40%
2e-04 35.49% 67.09% 34.59% 76.54% 77.50% 32.37%
3e-04 45.42% 68.74% 48.18% 77.74% 77.56% 44.82%
4e-04 57.67% 69.49% 56.11% 78.49% 77.68% 51.88%
5e-04 63.64% 69.22% 62.83% 79.57% 79.54% 60.43%

We sweep through a large range of α from 10−5 to 10−3. Larger α ensures better generalization consistently.

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

Scheduling Hyperparameters to Improve Generalization 29:23

Table 5. We Test on CIFAR-10 Under the l∞ Threat Model of Perturbation Budget 8
255 ,

without Additional Data

α SENet PreAct α SENet PreAct α SENet PreAct α SENet PreAct

0.002 32.46% 34.79% 0.016 45.84% 46.02% 0.028 47.19% 46.24% 0.04 47.47% 47.07%
0.004 36.82% 38.69% 0.018 45.91% 46.21% 0.03 47.19% 46.61% 0.1 48.36% 47.21%
0.006 39.68% 41.44% 0.02 46.45% 46.30% 0.032 47.30% 46.72% 0.15 48.99% 48.05%
0.008 41.92% 43.19% 0.022 46.42% 45.92% 0.034 47.41% 46.75% 0.2 49.36% 49.04%
0.01 43.38% 44.11% 0.024 46.52% 46.47% 0.036 47.44% 46.30% 0.25 50.24% 49.34%
0.012 44.33% 44.92% 0.026 47.16% 46.53% 0.038 47.49% 46.39% 0.3 50.83% 50.01%

The vanilla PGD-AT framework [55] is used to produce adversarially robust model. The model is evaluated under

10-steps PGD attack (PGD-10) [55]. The architectures we test are SENet-18 [29], and Preact-ResNet-18 [27].

Adversarial Training (PGD-AT) [55]. The adversarial testing accuracy is reported in Table 5.
Moderately larger α promotes better generalization universally in all settings.

There are several off-shelf learning rate auto-tuners, the two most popular ones are cosine an-
nealing scheduler [52] and one cycle scheduler [68, 69]. We adopt the default implementation of
these two tuners10 and sweep a large range of α1 for these two autotuners. We pick the best per-
formance cosine annealing and one cycle could get and compare them to our multistage QHM in
Figure 8. With careful hand-tuning, cosine annealing scheduler could match the performance of
multistage QHM. However, multistage QHM has at least two advantages over cosine annealing.
First, in Figure 8(a), the training curve for multistage QHM is steeper than cosine annealing, indi-
cating it trains faster. Second, cosine annealing has a complex learning rate adjustment rule and
therefore, practitioners are more difficult to understand its intrinsic process. A byproduct of its
black-box nature is it lacks a theoretical convergence guarantee or justification why it improves
test accuracy.

Adam and RMSProp are the two most widespread adaptive gradient methods. We adopt the
default implementation of these two optimizers11 and sweep a large range of α1 for these two
optimizers as the initial learning rate is the most influential factor for these two optimizers [80].
We pick the best performance RMSProp and Adam could get and compare them to our multistage
QHM in Figure 9. All three optimizers achieve practically 0 training loss in Figure 9(a). Multistage
QHM is better than RMSProp in Figure 9(b). Hand-tuned Adam matches Multistage QHM, with
a slightly worse end-of-training test accuracy. This is in accordance with [37, 80], also observing
momentum could achieve a very small advantage than adaptive algorithms. Therefore, our multi-
stage QHM has a natural tuning process that is straightforward to reason about, and achieves as
good performance as complex counterparts in benchmark task.

8.2 Evaluation of Asynchronous SGD

In this section, we present our empirical experiments to attest Theorem 5. We train a ResNet-50 [25]
on the tiny ImageNet dataset.12 Each node in our experiments has 4 NVIDIA TESLA K80 GPUs.
Our experimental setting could be found in Table 6. Specifically, we use a similar experimental
protocol as in [6, 21]. Every node uses a mini-batch size of 256. We run all experiments for 90
epochs (we observe all learning curves reach a plateau far before 90 epochs). We employ learning

10Please check https://pytorch.org/docs/stable/optim.html for their implementations.
11Please check https://pytorch.org/docs/stable/_modules/torch/optim/adam.html#Adam and https://pytorch.org/docs/

stable/_modules/torch/optim/rmsprop.html#RMSprop for their default specifications.
12Tiny Imagenet is a micro version of Imagenet, but is still a much larger dataset than CIFAR10. Tiny ImageNet contains

200 image classes, a training dataset of 100,000 images, a validation dataset of 10,000 images, and a test dataset of 10,000

images. The image size is 64 × 64.

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/_modules/torch/optim/adam.html#Adam
https://pytorch.org/docs/stable/_modules/torch/optim/rmsprop.html#RMSprop

29:24 J. Sun et al.

Fig. 8. Training curve and test accuracy of different learning rate schedulers (PreAct-ResNet-110 on

CIFAR-10).

Fig. 9. Training curve and test accuracy of different optimizers (PreAct-ResNet-110 on CIFAR-10).

Table 6. Experimental Setting for Distributed SGD

b per node epochs warm-up decay factor (epoch) network interface GPU

256 90 TRUE 0.1 (30, 60, 80) InfiniBand NVIDIA K80 (4 per node)

rate warm-up (i.e., increasing the learning rate to a large value over a certain number of training
iterations followed by decreasing the learning rate), which is known to improve performance in
large-scale training (the learning rate warms up during the first five epochs as in [21]). The learning
rate is decayed by a factor of 10 at epochs 30, 60, and 80. Our nodes communicate over 100 Gbps
InfiniBand, which is widely used in high-performance computing clusters. We employ 20 CPU
cores in each node.

We test two different popular implementations of distributed and asynchronous SGD: ALLRE-

DUCE SGD (AR-SGD) [2, 21] and Decentralized Parallel SGD (D-PSGD) [47, 48], which differ
in how the parameter server aggregates information and how worker machines communicate.

We sweep a wide range of initial α with a fine grid from α = 0.001 to α = 0.1. The pat-
tern is consistent, that a larger initial learning rate guarantees a better result, in both AR-SGD
and D-PSGD. We plot five learning curves with learning rates equally separated in a log scale
α = 0.005, 0.01, 0.02, 0.04, 0.08. Figures 10 and 11 present experimental results for AR-SGD and
D-PSGD, respectively.

Note that the learning curve in distributed learning is much more bumpy than centralized learn-
ing curve (see Figure 4 for example). However, it does not indicate the curve does not converge
yet. The bumpy curve is due to system behavior, a much more diverse dataset, and communication

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

Scheduling Hyperparameters to Improve Generalization 29:25

Fig. 10. Validation loss and precision curves when training ResNet-50 on the tiny ImageNet dataset with

different initial learning rates α by AR-SGD. Over a wide range of α , the pattern is very clear, where larger

the initial α ensures better generalization.

Fig. 11. Validation loss and precision curves when training ResNet-50 on the tiny ImageNet dataset with

different initial learning rates α by D-PSGD. Larger initial α ensures better generalization consistently.

overhead. Actually, we run the experiments long after 90 epochs, but the performances for these
learning curves do not significant improve.

In Figures 10 and 11, we can see over a wide range of α , the improvement brought by increasing
learning rate is consistent in both AR-SGD and D-PSGD. This observation proves the effectiveness
of Theorem 5, and could decrease the search space by only monotonically search the initial α .

9 RELATED WORK

9.1 Tuning Approaches

The hyperparameter search space in state-of-the-art deep learning systems can be too high-
dimensional for practitioners to explore manually, especially when deep learning has been increas-
ingly important for many interesting real-world problems, e.g., document processing, time series
analysis, and biomedical data mining [31, 35, 54, 73–76, 82, 83]. Costly hyperparameter tuning is the
main obstacle of automated machine learning. Many approaches have been developed to help tune
learning rate including random search, Bayesian optimization, geometric decay, cosine annealing
with warm restarts, and cyclic learning rate policy to name a few [9, 18, 32, 52, 68, 69, 72]. However,
they only consider the momentum-free scenario, or hold momentum parameter constant.

Due to the empirical advantage of SGD momentum, a lot of effort has also been devoted to
adaptive momentum scheduler [50, 77, 85]. Most of the existing works are focused on either SHB
or NAG and a general consensus with these two optimizers is that the momentum parameter needs
to be increased. Recent articles have also noted the impact of scheduling batch size [28, 70, 71],

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

29:26 J. Sun et al.

which mainly suggest linearly scale batch size with learning rate, but in an increasing direction.
We theoretically explain why it may slightly sacrifice test accuracy.

Multistage QHM is a more general and flexible framework than existing works that include
not only SHB and NAG. Every hyperparameter is allowed to vary and is theoretically justified to
improve generalization.

9.2 Generalization Analysis

Our work aims at theoretically and empirically justifying multistage QHM to generalize. A num-
ber of recent works empirically report the influence of hyperparameters, largely on batch size and
learning rate, and provide practical tuning guidelines, e.g., [34, 36] connected the training dynam-
ics, and the generalization to the ratio of batch size over step size.

Our generalization analysis relies on PAC-Bayesian inequalities [58], and we refer readers to
a comprehensive review of PAC-Bayesian learning and references therein [22]. [24, 51] proved a
PAC-Bayesian bound for vanilla SGD. Notably, [24] showed that the ratio of batch size and step
size could not be too large to ensure good generalization. Our work focuses on characterizing
generalization on a class of momentum schemes, and covers their vanilla SGD analysis as a special
case. Moreover, we show that our second order bound is better than their first order bound as it
implicates Corollary 5.1 that could not be derived only from first order bound.

9.3 Convergence Analysis

The convergence of the vanilla SGD has been heavily studied and key results are highlighted in
[10]. Despite the widespread use of the stochastic momentum method, there are limited defin-
itive theoretical convergence guarantees. [14, 42, 87] studied momentum schemes but only for
deterministic gradients. [84] studied the SHB and NAG methods and derived a convergence rate
with bounded gradient assumption (which we do not require), and they obtained rates that are
slower than those for SGD. Recent work establishes convergence guarantees in different settings
[7, 11, 41, 50, 79], largely only for the SHB or NAG, which are not directly generalizable to other
momentum schemes.

9.4 Asynchronous SGD

For a comprehensive coverage of advances in asynchronous parallel and distributed optimization,
we refer readers to [5] and references therein. Our article studies how basic hyperparameters im-
pact the generalization performances of ASGD. [3, 59] both observed the momentum method
has analogous performance as the asynchronous method, specifically, asynchrony is equivalent
to adding an implicit momentum to the SGD iteration, and [59] further proposed to counteract
asynchrony by reducing explicit momentum. [23] also focused on the momentum term, where
a variation of shifted momentum is proposed and empirically superior compared to no momen-
tum or with the original momentum. [65] conducted a comprehensive experimental evaluation
and showed how the increasing batch size will impact the required number of training steps to
reach a goal out-of-sample error. [65] demonstrated that optimal batch size depends heavily on
model, training algorithm, and dataset, and popular heuristic (e.g., linearly scaling the learning
rate with the batch size) typically does not universally apply to every case. [19, 86] both proposed
a staleness-dependent learning rate scheme, specifically, to scale the learning rate inversely to the
delay in order to reach a better generalization performance. [43] extended from [65] and studied
the interaction of data parallelism and sparsity (via parameter pruning) in deep networks through
extensive empirical experiments and confirmed a general scaling rule between increasing batch
size and the necessary number of training steps required. Our study is the first generalization

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

Scheduling Hyperparameters to Improve Generalization 29:27

bound of ASGD to our best knowledge, and based on the bound, we point out a moderately large
learning rate is beneficial.

10 CONCLUSIONS

In this article, we propose a powerful and general pipeline to derive PAC-Bayesian generalization
bounds for stochastic algorithms, which has applications in both centralized and distributed envi-
ronments. In centralized computing, this article is the first general tuning guideline applicable for
almost all popular momentum variants with a theoretical guarantee to boost generalization. Our
multistage paradigm shortens the tuning time without sacrificing any learning performances. Our
theoretical findings on the impact of initial step size and shrinking batch size are transferable to
new momentum variants and are of independent interest for practitioners to tune their own opti-
mizers. In distributed computing, our study is the first generalization theory of Asynchronous SGD,
and based on our derived bound, we point out how learning rate impacts ASGD’s performance and
could effectively reduce the manual search space.

A APPENDIX

In this section, we give the proof of Theorems 3, 4, and other important lemmas. We keep the key
proof steps and omit many algebraic transformations due to the page limit.

A.1 Proof of Lemma 1

Proof. We start from the Taylor expansion of Σθ = Σ(0)
θ
+ αΣ(1)

θ
+ α 2

2 Σ(2)
θ
+ O (α3). We know

from [20]:

Σ(0)
θ
= 0 AΣ(1)

θ
+ Σ(1)

θ
A =

1

b
Σ,

Σ(1)
θd
+ Σ(1)

dθ
= AΣ(1)

θ
+ Σ(1)

θ
A − 2(1 + β − νβ)

1 + β

1

b
Σ

AΣ(2)
θ
+ Σ(2)

θ
A =

2νβ

1 − β

(
Σ(1)

dθ
A +AΣ(1)

θd

)
+ 2AΣ(1)

θ
A,

, (33)

where Σθd is the covariance matrix between d and θ . Recall Taylor expansion: tr(Σθ) = α tr(Σ(1)
θ

)+
α 2

2 tr(Σ(2)
θ

) +O (α3). Therefore, we derive formula for tr(Σ(1)
θ

) and tr(Σ(2)
θ

). We could get:

Σ(1)
θd
A−1 + Σ(1)

dθ
A−1

= AΣ(1)
θ
A−1 + Σ(1)

θ
− 2(1 + β − νβ)

1 + β

1

b
ΣA−1

AΣ(2)
θ
A−1 + Σ(2)

θ

=
2νβ

1 − β

(
Σ(1)

dθ
+AΣ(1)

θd
A−1

)
+ 2AΣ(1)

θ
.

(34)

Taking trace on both sides and recall the trace is invariant under cyclic permutations: tr(Σ(1)
θd
A−1)+

1+β−ν β

1+β
1
b

tr(ΣA−1) = tr(Σ(1)
θ

) and tr(Σ(2)
θ

) =
2ν β

1−β
tr(Σ(1)

θd
) + tr(AΣ(1)

θ
).

We know from Equation (33): 2tr(AΣ(1)
θ

) = 1
b

tr(Σ) and 2tr(Σ(1)
θd

) = tr(AΣ(1)
θ
+ Σ(1)

θ
A) −

2(1+β−ν β)
1+β

1
b

tr(Σ).

Therefore, we have tr(Σ(2)
θ

) = (
ν β

1−β
(1 − 2(1+β−ν β)

1+β
) + 1

2) 1
b

tr(Σ).

From AΣ(1)
θ
A−1 + Σ(1)

θ
= 1

b
ΣA−1 we could get tr(Σ(1)

θ
) = 1

2b
tr(ΣA−1).

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

29:28 J. Sun et al.

Together we finish the proof regarding trace. Next we prove the determinant part. From AΣ(1)
θ
+

Σ(1)
θ
A = 1

b
Σ we could get AΣθ + ΣθA =

α
b

Σ +O (α2).

Assuming Σθ is symmetric, ΣθA = α
2b

Σ + O (α2). It is not difficult to show: det(Σθ) =

(α
2b

)d det(ΣA−1) +O (α2) given Σθ =
α
2b

ΣA−1 +O (α2), with d is the dimension. Due to page limit,
we omit the detail. �

As we are mainly concerned about how α , β,ν affect the trend of generalization bound, we
ignore higher order terms for now. The experiments have shown that our approximations are
satisfactory.

A.2 Proof of Theorem 3

Proof. With Theorem 2 and Lemma 1, we are ready to prove Theorem 3. Recall the density of
prior and posterior distributions:

fP =
1√

2π det(λ0Id)
exp

{
− 1

2
(θ − θ0)T (λ0Id)−1 (θ − θ0)

}
,

fQ =
1√

2π det(Σθ)
exp

{
− 1

2
θT Σ−1

θ θ
}
.

(35)

We calculate their KL(Q | |P) as follows: KL(Q | |P) =
∫

(1
2 log |λ0Id |

|Σθ | −
1
2θ

T Σ−1
θ
θ + 1

2 (θ − θ0)T (λ0Id)−1

(θ − θ0)) fQ (θ)dθ = 1
2 {tr((λ0Id)−1Σθ) + θT

0 (λ0Id)−1θ0 − d + log |λ0Id |
|Σθ | } =

1
2λ0

θT
0 θ0 − d

2 +
d
2 log λ0 +

1
2λ0

tr(Σθ) − 1
2 log|Σθ |.

Application of the determinant and trace from Lemma 1 here will complete our proof. �

A.3 Proof of Theorem 4

Proof. We now study R (ηk+1) − R (ηk):

Eξk
[R (ηk+1)] ≤

= R (ηk) + Eξk
[<∇R (ηk),−αkд̂k >] +

Lα2
k

2
Eξk

[‖д̂k ‖2].
(36)

Taking full expectation E = Eξ1
Eξ2
. . .Eξk

on both sides:

E[R (ηk+1)]

≤ E[R (ηk)] + E[<∇R (ηk),−αkдk >] +
Lα2

k

2
E[‖д̂k ‖2]

≤ E[R (ηk)] +
Lα2

k

2
E[‖д̂k ‖2] − αkE[‖дk ‖2]

+ αk
ck

2
L2
E[‖ηk − θk ‖2] + αk

1

2ck
E[‖дk ‖2],

for ck > 0 as any positive constant. And we know ηk − θk = −αk βk νk

1−βk
dk−1:

E[R (ηk+1)] ≤ E[R (ηk)] + α3
k

ck

2
L2

(
βkνk

1 − βk

)2

E[‖dk−1‖2]

+

(
αk

1

2ck
− αk

)
E[‖дk ‖2] +

Lα2
k

2
E[‖д̂k ‖2]. (37)

Let us make a small detour and first prove Lemma 2.

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

Scheduling Hyperparameters to Improve Generalization 29:29

Proof of Lemma 2. We know V[yk] = E[‖yk − Σk
i=1ak,iдi ‖2] = E[‖Σk−1

i=1 ak,i (дi − д̂i) + (1 −

νkβk) (дk − д̂k)‖2]
(i)
≤ (6 − 4β1 − 4βkνk + 2β2

k
ν2

k
)σ 2, where (i) follows from that {д̂k }k ∈N are in-

dependent from each other and Eξk
[‖д̂k − дk ‖2] ≤ σ 2, and also Lemma 4 in [50]. We know

Σk
i=1ak,i = 1 − νk

∏k
i=1 βi , thus we have:

E

⎡⎢⎢⎢⎢⎢⎣
������дk −

1

1 − νk
∏k

i=1 βi

Σk
i=1ak,iдi

������
2⎤⎥⎥⎥⎥⎥⎦

=
1

(1 − νk
∏k

i=1 βi)2
E

[���Σk
i=1ak,i (дk − дi)���2

]
(i)
≤ 1

(1 − νk
∏k

i=1 β
i)2

Σk
i, j=1ak,iak, j

(
1

2
E[‖дk − дj ‖2] +

1

2
E[‖дk − дi ‖2]

)

=
1

1 − νk
∏k

i=1 βi

Σk
i=1ak,iE[‖дk − дi ‖2],

(ii)
≤ 1

1 − νk
∏k

i=1 βi

Σk
i=1ak,i

(
(k − i)Σk−1

j=i E[‖дj+1 − дj ‖2]
)
, (38)

(iii)
≤ 1

1 − νk
∏k

i=1 βi

Σk
i=1ak,i

(
(k − i)L2Σk−1

j=i E[‖θ j+1 − θ j ‖2]
)

=
1

1 − νk
∏k

i=1 βi

Σk−1
j=1

(
Σj

i=1ak,i (k − i)
)
E[‖θ j+1 − θ j ‖2]L2,

(iv)
≤ Σk−1

j=1

νkβ
k−j

k
L2

1 − νk
∏k

i=1 βi

(
k − j +

βk

1 − βk

)
E[‖θ j+1 − θ j ‖2].

where (i) follows from Cauchy–Schwarz inequality, (ii) follows from triangle inequality, (iii) fol-
lows from smoothness, (iv) follows from Proposition 5 in [50]. �

Back to Inequality Equation (37):

E[R (ηk+1)] ≤ E[R (ηk)] + α3
k

ck

2
L2

(
βkνk

1 − βk

)2

E[‖dk−1‖2]

+

(
αk

1

2ck
− αk

)
E[‖дk ‖2] +

Lα2
k

2
E[‖д̂k ‖2].

We study the following sequence: Lk � R (ηk) −R∗ + Σk−1
i=1 qi ‖θk+1−i −θk−i ‖2 following the idea

from [50], where qi are constants to be determined, omitting many algebraic transformations: we
have

E[Lk+1 − Lk]

≤
(
2αkckL

2W 2
1 − αk +

αk

2ck
+

1

2
Lα2

k + 4q1α
2
k

)
E[‖дk ‖2]

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

29:30 J. Sun et al.

+
1

2
Lα2

kσ
2 + αkckL

2W 2
1 E

[
‖dk−1 − Σk−1

i=1 ak−1,iдi ‖2
]
+ 2q1α

2
kE

[
‖yk − Σk

i=1ak,iдi ‖2
]

+ 4q1α
2
k
��1 − νk

k∏
i=1

βi
��

2

E

⎡⎢⎢⎢⎢⎣‖дk −
1

1 − νk
∏k

i=1 βi

Σk
i=1ak,iдi ‖2

⎤⎥⎥⎥⎥⎦ (39)

+ 2αkckL
2W 2

1

1

β2
k

��1 −
k∏

i=1

βi
��

2

E

⎡⎢⎢⎢⎢⎣‖дk −
1

1 −∏k
i=1 βi

Σk
i=1bk,iдi ‖2

⎤⎥⎥⎥⎥⎦
+ Σk−1

i=1 (qi+1 − qi)‖θk+1−i − θk−i ‖2.

where bk,i = (1 − βi)
∏k

j=i+1 βj . Set:

q1 =
L3 α 2

1 ν 2
1 (βn+β 2

n)

(1−β1)(1−βn)2

(1−βn)2

(βn+β 2
n)L2 − 4α2

1νk

,

where n denotes the number of iterations, it is not difficult to verify the sum of last three terms is
negative. Therefore, combining Lemma 5 in [50], we could have:

E[Lk+1 − Lk] ≤
(
2αkckL

2W 2
1 − αk +

αk

2ck
+

1

2
Lα2

k + 4q1α
2
k

)
E[‖дk ‖2]

+

(
1

2
Lα2

k + 24αkckL
2W 2

1

β1 (1 − βk)√
βn + β

2
n

+ 2q1α
2
k (6 − 4β1 − 4βkνk + 2β2

kν
2
k)

)
σ 2. (40)

Note that ifW1 =
1

48
√

2L
, and

1−β1

β1
≤ 12

1−βn√
βn+β 2

n

as in Remark 6.2, we could get: q1 ≤ L
4(1−β1) .

We now have: E[Lk+1 − Lk] ≤ −Q1,kE[‖дk ‖2] +Q2,k , where Q1,k � −2αkckL
2W 2

1 + αk − αk

2ck
−

1
2Lα

2
k
− 4q1α

2
k

, and Q2,k � 1
2Lα

2
k
+ 24αkckL

2W 2
1

β1 (1−βk)√
βn+β 2

n

+ 2q1α
2
k

(6 − 4β1 − 4βkνk + 2β2
k
ν2

k
)σ 2.

Set ci =
1−βi

2Lαi
, and recall αi =

W1 (1−βi)
βi νi

=
1−βi

24
√

2Lβi
, we could verify Q1,k ≥ αk

2 .

We could bound Q2,k :

Q2,k ≤
1

2
α2

kL + 12α2
kL

β2
k
ν2

k

(1 − βk)2

β1√
βn + β

2
n

+
3 + β2

k
ν2

k

1 − β1
α2

kLσ
2
. (41)

As L1 ≥ E[L1 − Lk+1] ≥ Σk
i=1Q1,iE[‖дi ‖2] − Σk

i=1Q2,i , as k = T1 +T2 + · · · +TM :

M∑
l=1

αl

2

T1+T2+...+Tl∑
i=T1+T2+...+Tl−1+1

E[‖дi ‖2]

≤ L1 +

M∑
l=1

Tl

����
1

2
α2

kL + 12α2
kL

β2
k
ν2

k

(1 − βk)2

β1√
βn + β

2
n

+
3 + β2

k
ν2

k

1 − β1
α2

kL
����σ

2. (42)

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

Scheduling Hyperparameters to Improve Generalization 29:31

Dividing both sides by 1
2MW2 =

1
2MαlTl

1

M

M∑
l=1

1

Tl

T1+T2+· · ·+Tl∑
i=T1+T2+· · ·+Tl−1+1

E[‖дi ‖2]

≤ 2(R (θ1) − R∗)
MW2

+
1

M

M∑
l=1

(
αkL + 24αkL

β2
k
ν2

k

(1 − βk)2

β1√
βn + β

2
n

+
6 + 2β2

k
ν2

k

1 − β1
αkL

)
σ 2.

As the last stage is M , substitute βn = βM will complete our proof. �

A.4 Proof of Lemma 3

Proof. We include the proof here for the sake of completeness, which is adapted from [59]. We
use Equation (8) twice, and subtracting θt from θt+1,

θt+1 − θt = θt − θt−1 − α (д̂(ϕt , ζt) − д̂(ϕt−1, ζt−1)).

Let T denote the smallest σ -algebra under which all random staleness variables are measurable.
Then, by the assumption that staleness and instance selection are independent, we have

E[θt+1 − θt |T] = E[θt − θt−1 |T] − α (E[д̂(ϕt) |T] − E[д̂(ϕt−1) |T]),

where the expectation is taken with respect to the random selection of ζt ’s.
Finally, integrating overall randomness,

E[θt+1 − θt] = E[θt − θt−1] − α ��
∞∑

l=0

qlE[д̂(θt−l)] −
∞∑

l=0

qlE[д̂(θt−l−1)]�� ,
= E[θt − θt−1] − α ��q0E[д̂(θt)] +

∞∑
l=1

qlE[д̂(θt−l)] −
∞∑

l=0

qlE[д̂(θt−l−1)]�� ,
= E[θt − θt−1] − αq0E[д̂(θt)] − α ��

∞∑
l=0

ql+1E[д̂(θt−l−1)] −
∞∑

l=0

qlE[д̂(θt−l−1)]�� ,
= E[θt − θt−1] − αq0E[д̂(θt)] + α

∞∑
l=0

(ql − ql+1)E[д̂(θt−l−1)].

Let Wt denote the time the t th iteration takes. Under the assumption that (Wt)t are mutually
independent and exponential work timeWt ∼ exp λ, we could obtain,

τt ∼ Poisson(λ(M − 1)Wt).

It is straightforward to show that τt is geometrically distributed on {0, 1, . . . },

τt ∼ Geom(p), where p =
1

M
,

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

29:32 J. Sun et al.

where M is the number of workers. Note that E[τt] = M − 1. Denote μ = (1 − 1
M

) and c = 1 − μ.
We know the following,

E[θt+1 − θt] = E[θt − θt−1] − αq0E[д̂(θt)] + α
∞∑

l=0

(ql − ql+1)E[д̂(θt−l−1)],

= E[θt − θt−1] − αcE[д̂(θt)] + α
∞∑

l=0

(cμl − cμl+1)E[д̂(θt−l−1)],

= E[θt − θt−1] − αcE[д̂(θt)] − cE[θt − θt−1],

= μE[θt − θt−1] − αcE[д̂(θt)],

= μE[θt − θt−1] − α (1 − μ)E[д̂(θt)].

Substitute μ = (1 − 1
M

), we get,

E[θt+1 − θt] =
(
1 − 1

M

)
E[θt − θt−1] − α

M
E[д̂(θt)]. �

A.5 Proof of Lemma 4

Proof. We include the proof here for the sake of completeness, which is adapted from [57]. The
first moments of the coupled stochastic differential Equations (24) are

dE[v] = −μE[v]dt − αAE[θ]dt , dE[θ] = E[v]dt . (43)

Equations for the second moments are

dE[θθT] =E[dθθT + θdθT] = (E[vθT] + E[θvT])dt ,

dE[θvT] =E[dθvT + θdvT] = E[vvT]dt − μE[θvT]dt − αE[θθT]Adt ,

dE[vθT] =E[dvθT +vdθT] = E[vvT]dt − μE[vθT]dt − αAE[θθT]dt ,

dE[vvT] =E[dvvT +vdvT] + E[dvdvT]

= − 2μE[vvT]dt − αAE[θvT]dt − αE[vθT]Adt +
α2

b
CCTdt . (44)

We set the left-hand sides of all equations to zero to find a stationary solution. The first equation
implies that,

E[vθT] + E[θvT] = 0. (45)

We can add the second equation and the third equation to get,

0 = dE[vθT + θvT] = 2E[vvT]dt − αAE[θθT]dt − αE[θθT]Adt . (46)

Combining this with the fourth equation,

E[vvT] =
α

2
E[θθT]A +

α

2
AE[θθT],

μE[vvT] =
α2

2b
CCT − 1

2
α (AE[θvT] + E[vθT]A).

(47)

By some algebraic transformations, we could show − 1
2α (AE[θvT] + E[vθT]A) = 0, which yields,

ΣθA +AΣθ =
α

μb
CCT . �

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

Scheduling Hyperparameters to Improve Generalization 29:33

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their valuable comments and helpful
suggestions.

REFERENCES

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G.

Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

2016. TensorFlow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Op-

erating Systems Design and Implementation. USENIX Association, Savannah, GA, 265–283. Retrieved from https://

www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi.

[2] Takuya Akiba, Shuji Suzuki, and Keisuke Fukuda. 2017. Extremely large minibatch SGD: Training ResNet-50 on Ima-

geNet in 15 minutes. arXiv:1711.04325. Retrieved from https://arxiv.org/abs/1711.04325.

[3] Jing An, J. Lu, and Lexing Ying. 2018. Stochastic modified equations for the asynchronous stochastic gradient descent.

arXiv: 1805.08244. Retrieved from https://arxiv.org/abs/1805.08244.

[4] W. An, H. Wang, Q. Sun, J. Xu, Q. Dai, and L. Zhang. 2018. A PID controller approach for stochastic optimization of

deep networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 8522–8531.

[5] By Mahmoud Assran, Arda Aytekin, Hamid Reza Feyzmahdavian, Mikael Johansson, and Michael G. Rabbat. 2020.

Advances in asynchronous parallel and distributed optimization. Proceedings of the IEEE 108, 11 (2020), 2013–2031.

DOI:https://doi.org/10.1109/JPROC.2020.3026619

[6] Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and Michael G. Rabbat. 2019. Stochastic gradient push for distributed

deep learning. In Proceedings of the International Conference on Machine Learning.

[7] Necdet Aybat, Alireza Fallah, Mert Gürbüzbalaban, and Asuman Ozdaglar. 2020. Robust accelerated gradient methods

for smooth strongly convex functions. SIAM Journal on Optimization 30, 1 (2020), 717–751. DOI:https://doi.org/10.

1137/19M1244925

[8] Yoshua Bengio. 2012. Practical recommendations for gradient-based training of deep architectures. In Proceedings of

the Neural Networks: Tricks of the Trade.

[9] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter optimization. Journal of Machine Learn-

ing Research 13, 2 (2012), 281–305.

[10] L. Bottou, Frank E. Curtis, and J. Nocedal. 2018. Optimization methods for large-scale machine learning. arXiv:

1606.04838. Retrieved from https://arxiv.org/abs/1606.04838.

[11] B. Can, Mert Gürbüzbalaban, and Lingjiong Zhu. 2019. Accelerated linear convergence of stochastic momentum meth-

ods in wasserstein distances. In Proceedings of the International Conference on Machine Learning.

[12] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman. 2014. Project adam: Building an effi-

cient and scalable deep learning training system. In Proceedings of the 11th USENIX Symposium on Operating Systems

Design and Implementation. USENIX Association, Broomfield, CO, 571–582. Retrieved from https://www.usenix.org/

conference/osdi14/technical-sessions/presentation/chilimbi.

[13] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc’Aurelio

Ranzato, Andrew Senior, Paul Tucker, Ke Yang, and Andrew Y. Ng. 2012. Large scale distributed deep networks. In

Proceedings of the 25th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red

Hook, NY, 1223–1231.

[14] Aaron Defazio. 2019. On the curved geometry of accelerated optimization. In Proceedings of the Advances in Neural

Information Processing Systems. Curran Associates, Inc., 1766–1775. Retrieved from http://papers.nips.cc/paper/8453-

on-the-curved-geometry-of-accelerated-optimization.pdf.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image

database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. 248–255. DOI:https://

doi.org/10.1109/CVPR.2009.5206848

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: Pre-training of deep bidirectional

transformers for language understanding. arXiv:1810.04805. Retrieved from http://arxiv.org/abs/1810.04805.

[17] Simon S. Du and Wei Hu. 2019. Width provably matters in optimization for deep linear neural networks.

arXiv:1901.08572. Retrieved from http://arxiv.org/abs/1901.08572.

[18] R. Ge, Sham M. Kakade, R. Kidambi, and Praneeth Netrapalli. 2019. The step decay schedule: A near optimal, geomet-

rically decaying learning rate procedure. In Proceedings of the Advances in Neural Information Processing Systems.

[19] Niv Giladi, Mor Shpigel Nacson, Elad Hoffer, and Daniel Soudry. 2020. At stability’s edge: How to adjust hyperparam-

eters to preserve minima selection in asynchronous training of neural networks?. In Proceedings of the International

Conference on Learning Representations. Retrieved from https://openreview.net/forum?id=Bkeb7lHtvH.

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://arxiv.org/abs/1711.04325
https://arxiv.org/abs/1805.08244
https://doi.org/10.1109/JPROC.2020.3026619
https://doi.org/10.1137/19M1244925
https://arxiv.org/abs/1606.04838
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi
http://papers.nips.cc/paper/8453-on-the-curved-geometry-of-accelerated-optimization.pdf
https://doi.org/10.1109/CVPR.2009.5206848
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1901.08572
http://arxiv.org/abs/1901.08572
https://openreview.net/forum?id=Bkeb7lHtvH

29:34 J. Sun et al.

[20] Igor Gitman, Hunter Lang, Pengchuan Zhang, and Lin Xiao. 2019. Understanding the role of momentum in sto-

chastic gradient methods. In Proceedings of the Advances in Neural Information Processing Systems. Curran Asso-

ciates, Inc., 9633–9643. Retrieved from http://papers.nips.cc/paper/9158-understanding-the-role-of-momentum-in-

stochastic-gradient-methods.pdf.

[21] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,

Yangqing Jia, and Kaiming He. 2017. Accurate, large minibatch SGD: Training ImageNet in 1 hour. arXiv:1706.02677.

Retrieved from http://arxiv.org/abs/1706.02677.

[22] Benjamin Guedj. 2019. A primer on PAC-Bayesian learning. arXiv:1901.05353. Retrieved from https://arxiv.org/abs/

1901.05353.

[23] Ido Hakimi, Saar Barkai, Moshe Gabel, and A. Schuster. 2019. Taming momentum in a distributed asynchronous

environment. arXiv:1907.11612. Retrieved from https://arxiv.org/abs/1907.11612.

[24] Fengxiang He, Tongliang Liu, and Dacheng Tao. 2019. Control batch size and learning rate to generalize well: The-

oretical and empirical evidence. In Proceedings of the Advances in Neural Information Processing Systems. Curran As-

sociates, Inc., 1143–1152. Retrieved from http://papers.nips.cc/paper/8398-control-batch-size-and-learning-rate-to-

generalize-well-theoretical-and-empirical-evidence.pdf.

[25] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE

Conference on Computer Vision and Pattern Recognition. 770–778.

[26] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings

of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 770–778.

[27] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. 2016. Identity mappings in deep residual networks.

arXiv:1603.05027. Retrieved from https://arxiv.org/abs/1603.05027.

[28] Elad Hoffer, Itay Hubara, and Daniel Soudry. 2017. Train longer, generalize better: Closing the generalization gap

in large batch training of neural networks. In Proceedings of the 31st International Conference on Neural Information

Processing Systems. Curran Associates Inc., Red Hook, NY, 1729–1739.

[29] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-excitation networks. In Proceedings of the 2018 IEEE/CVF Conference

on Computer Vision and Pattern Recognition. 7132–7141. DOI:https://doi.org/10.1109/CVPR.2018.00745

[30] Wenqing Hu, Chris Junchi Li, Lei Li, and Jian-Guo Liu. 2018. On the Diffusion Approximation of Nonconvex Stochastic

Gradient Descent. arXiv:1705.07562. Retrieved from https://arxiv.org/abs/1701.00133.

[31] Mengdi Huai, Jianhui Sun, Renqin Cai, Liuyi Yao, and Aidong Zhang. 2020. Malicious attacks against deep reinforce-

ment learning interpretations. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Dis-

covery & Data Mining. Association for Computing Machinery, New York, NY, 472–482. DOI:https://doi.org/10.1145/

3394486.3403089

[32] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, and Kilian Q. Weinberger. 2017. Snapshot ensembles:

Train 1, get M for free. arXiv:1704.00109. Retrieved from http://arxiv.org/abs/1704.00109.

[33] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. 2017. Densely connected convolutional networks. In

Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2261–2269.

[34] Stanisław Jastrzębski, Zac Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Amos Storkey, and Yoshua Bengio.

2018. Three Factors Influencing Minima in SGD. Retrieved from https://openreview.net/forum?id=rJma2bZCW.

[35] Kishlay Jha, Guangxu Xun, Yaqing Wang, and Aidong Zhang. 2019. Hypothesis generation from text based on co-

evolution of biomedical concepts. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining. Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis

(Eds.). ACM, 843–851. DOI:https://doi.org/10.1145/3292500.3330977

[36] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang. 2016. On

large-batch training for deep learning: Generalization gap and sharp minima. arXiv:1609.04836. Retrieved from http://

arxiv.org/abs/1609.04836.

[37] Nitish Shirish Keskar and Richard Socher. 2017. Improving generalization performance by switching from adam to

SGD. arXiv:1712.07628. Retrieved from http://arxiv.org/abs/1712.07628.

[38] Rahul Kidambi, Praneeth Netrapalli, Prateek Jain, and Sham M. Kakade. 2018. On the insufficiency of existing momen-

tum schemes for stochastic optimization. arXiv:1803.05591. Retrieved from http://arxiv.org/abs/1803.05591.

[39] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. arXiv:1412.6980. Retrieved

from https://arxiv.org/abs/1412.6980.

[40] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep convolutional neural

networks. Advances in Neural Information Processing Systems 25 (2012), 1097–1105. Retrieved from http://papers.nips.

cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf.

[41] A. Kulunchakov and J. Mairal. 2019. Estimate sequences for variance-reduced stochastic composite optimization. In

Proceedings of the International Conference on Machine Learning.

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

http://papers.nips.cc/paper/9158-understanding-the-role-of-momentum-in-stochastic-gradient-methods.pdf
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1901.05353
https://arxiv.org/abs/1907.11612
http://papers.nips.cc/paper/8398-control-batch-size-and-learning-rate-to-generalize-well-theoretical-and-empirical-evidence.pdf
https://arxiv.org/abs/1603.05027
https://doi.org/10.1109/CVPR.2018.00745
http://arxiv.org/abs/1705.07562
https://arxiv.org/abs/1701.00133
https://doi.org/10.1145/3394486.3403089
http://arxiv.org/abs/1704.00109
http://arxiv.org/abs/1704.00109
https://openreview.net/forum?id=rJma2bZCW
https://doi.org/10.1145/3292500.3330977
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1712.07628
http://arxiv.org/abs/1712.07628
http://arxiv.org/abs/1803.05591
http://arxiv.org/abs/1803.05591
https://arxiv.org/abs/1412.6980
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Scheduling Hyperparameters to Improve Generalization 29:35

[42] M. Laborde and Adam M. Oberman. 2020. A lyapunov analysis for accelerated gradient methods: From deterministic

to stochastic case. In Proceedings of the International Conference on Artificial Intelligence and Statistics.

[43] Namhoon Lee, Thalaiyasingam Ajanthan, Philip Torr, and Martin Jaggi. 2021. Understanding the effects of data par-

allelism and sparsity on neural network training. In Proceedings of the International Conference on Learning Represen-

tations. Retrieved from https://openreview.net/forum?id=rsogjAnYs4z.

[44] Laurent Lessard, Benjamin Recht, and Andrew Packard. 2014. Analysis and design of optimization algorithms via inte-

gral quadratic constraints. SIAM Journal on Optimization 26, 1 (2014), 57–95. DOI:https://doi.org/10.1137/15M1009597

[45] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. 2018. Visualizing the loss landscape of neural

nets. In Proceedings of the 32nd International Conference on Neural Information Processing Systems. Curran Associates

Inc., Red Hook, NY, 6391–6401.

[46] Qianxiao Li, Cheng Tai, and Weinan E. 2017. Stochastic modified equations and adaptive stochastic gradient algo-

rithms. In Proceedings of the International Conference on Machine Learning. PMLR, International Convention Centre,

Sydney, Australia, 2101–2110. Retrieved from http://proceedings.mlr.press/v70/li17f.html.

[47] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. 2017. Can decentralized algorithms

outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent. In Proceedings

of the 31st International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY,

5336–5346.

[48] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. 2018. Asynchronous decentralized parallel stochastic gradient descent.

In Proceedings of the International Conference on Machine Learning. 3049–3058. Retrieved from http://proceedings.mlr.

press/v80/lian18a.html.

[49] Chaoyue Liu, Libin Zhu, and Mikhail Belkin. 2020. Toward a Theory of Optimization for Over-parameterized Systems

of Non-linear Equations: The Lessons of Deep Learning. arXiv:2003.00307. Retrieved from https://arxiv.org/abs/2003.

00307.

[50] Yanli Liu, Yuan Gao, and Wotao Yin. 2020. An Improved Analysis of Stochastic Gradient Descent with Momentum.

arXiv:2007.07989. Retrieved from https://arxiv.org/abs/2007.07989.

[51] Ben London. 2017. A PAC-Bayesian analysis of randomized learning with application to stochastic gradient descent.

In Proceedings of the Advances in Neural Information Processing Systems.

[52] Ilya Loshchilov and Frank Hutter. 2016. SGDR: Stochastic gradient descent with restarts. arXiv:1608.03983. Retrieved

from http://arxiv.org/abs/1608.03983.

[53] Jerry Ma and Denis Yarats. 2019. Quasi-hyperbolic momentum and Adam for deep learning. In Proceedings of the

International Conference on Learning Representations. Retrieved from https://openreview.net/forum?id=S1fUpoR5FQ.

[54] Tianle Ma and Aidong Zhang. 2019. AffinityNet: Semi-supervised few-shot learning for disease type prediction. In Pro-

ceedings of the 33rd AAAI Conference on Artificial Intelligence, 32st Innovative Applications of Artificial Intelligence Con-

ference, 9th AAAI Symposium on Educational Advances in Artificial Intelligence. AAAI Press, 1069–1076. DOI:https://

doi.org/10.1609/aaai.v33i01.33011069

[55] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018. Towards deep

learning models resistant to adversarial attacks. In Proceedings of the International Conference on Learning Representa-

tions. Retrieved from https://openreview.net/forum?id=rJzIBfZAb.

[56] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew B. Blaschko, and Andrea Vedaldi. 2013. Fine-grained visual clas-

sification of aircraft. arXiv:1306.5151. Retrieved from http://arxiv.org/abs/1306.5151.

[57] Stephan Mandt, Matthew D. Hoffman, and David M. Blei. 2017. Stochastic gradient descent as approximate Bayesian

inference. Journal of Machine Learning Research 18, 1 (2017), 4873–4907.

[58] David A. McAllester. 1998. Some PAC-Bayesian theorems. In Proceedings of the 11th Annual Conference on Computa-

tional Learning Theory. Association for Computing Machinery, New York, NY, 230–234. DOI:https://doi.org/10.1145/

279943.279989

[59] Ioannis Mitliagkas, Ce Zhang, Stefan Hadjis, and C. Ré. 2016. Asynchrony begets momentum, with an application to

deep learning. 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton). 997–1004.

[60] Y. Nesterov. 1983. A method for solving the convex programming problem with convergence rate O(1/k2). Dokl. Akad.

Nauk Sssr 269 (1983), 543–547.

[61] Feng Niu, Benjamin Recht, Christopher Re, and Stephen J. Wright. 2011. HOGWILD! A lock-free approach to paral-

lelizing stochastic gradient descent. In Proceedings of the 24th International Conference on Neural Information Processing

Systems. Curran Associates Inc., Red Hook, NY, 693–701.

[62] Adam Paszke, S. Gross, Francisco Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,

Alban Desmaison, Andreas Köpf, E. Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, B.

Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An imperative style, high-performance deep learn-

ing library. In Proceedings of the Advances in Neural Information Processing Systems.

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

https://openreview.net/forum?id=rsogjAnYs4z
https://doi.org/10.1137/15M1009597
http://proceedings.mlr.press/v70/li17f.html
http://proceedings.mlr.press/v80/lian18a.html
http://arxiv.org/abs/2003.00307
https://arxiv.org/abs/2003.00307
http://arxiv.org/abs/2007.07989
https://arxiv.org/abs/2007.07989
http://arxiv.org/abs/1608.03983
http://arxiv.org/abs/1608.03983
https://openreview.net/forum?id=S1fUpoR5FQ
https://doi.org/10.1609/aaai.v33i01.33011069
https://openreview.net/forum?id=rJzIBfZAb
http://arxiv.org/abs/1306.5151
https://doi.org/10.1145/279943.279989

29:36 J. Sun et al.

[63] B. T. Polyak. 1964. Some methods of speeding up the convergence of iteration methods. U. S. S. R. Computational

Mathematics and Mathematical Physics 4, 5 (1964), 1–17. DOI:https://doi.org/10.1016/0041-5553(64)90137-5

[64] Sebastian Ruder. 2016. An overview of gradient descent optimization algorithms. arXiv:1609.04747. Retrieved from

https://arxiv.org/abs/1609.04747.

[65] Christopher J. Shallue, Jaehoon Lee, Joseph M. Antognini, Jascha Sohl-Dickstein, Roy Frostig, and George E. Dahl.

2018. Measuring the effects of data parallelism on neural network training. arXiv:1811.03600. Retrieved from http://

arxiv.org/abs/1811.03600.

[66] John Shawe-Taylor and Robert C. Williamson. 1997. A PAC analysis of a Bayesian estimator. In Proceedings of the 10th

Annual Conference on Computational Learning Theory. Association for Computing Machinery, New York, NY, 2–9.

DOI:https://doi.org/10.1145/267460.267466

[67] Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks for large-scale image recognition.

In Proceedings of the 3rd International Conference on Learning Representations. arXiv:1409.1556. Retrieved from http://

arxiv.org/abs/1409.1556.

[68] L. N. Smith. 2017. Cyclical learning rates for training neural networks. In Proceedings of the 2017 IEEE Winter Conference

on Applications of Computer Vision. 464–472. DOI:https://doi.org/10.1109/WACV.2017.58

[69] Leslie N. Smith and Nicholay Topin. 2017. Super-convergence: Very fast training of residual networks using large

learning rates. arXiv:1708.07120. Retrievd from http://arxiv.org/abs/1708.07120.

[70] Sam Smith and Quoc V. Le. 2018. A Bayesian perspective on generalization and stochastic gradient descent. Retrieved

from https://openreview.net/pdf?id=BJij4yg0Z.

[71] Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. 2018. Don’t decay the learning rate, increase the batch size. In

Proceedings of the International Conference on Learning Representations. Retrieved from https://openreview.net/forum?

id=B1Yy1BxCZ.

[72] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. 2012. Practical Bayesian optimization of machine learning algo-

rithms. In Proceedings of the 25th International Conference on Neural Information Processing Systems. Curran Associates

Inc., Red Hook, NY, 2951–2959.

[73] Jianhui Sun, Mengdi Huai, Kishlay Jha, and Aidong Zhang. 2022. Demystify hyperparameters for stochastic optimiza-

tion with transferable representations. In Proceedings of the 28th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining. Association for Computing Machinery, New York, NY. DOI:https://doi.org/10.1145/3534678.

3539298

[74] Jianhui Sun, Ying Yang, Guangxu Xun, and Aidong Zhang. 2021. A stagewise hyperparameter scheduler to improve

generalization. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. Association

for Computing Machinery, New York, NY, 1530–1540. DOI:https://doi.org/10.1145/3447548.3467287

[75] Qiuling Suo, Liuyi Yao, Guangxu Xun, Jianhui Sun, and Aidong Zhang. 2019. Recurrent imputation for multivariate

time series with missing values. In Proceedings of the 2019 IEEE International Conference on Healthcare Informatics.

IEEE, 1–3. DOI:https://doi.org/10.1109/ICHI.2019.8904638

[76] Qiuling Suo, Weida Zhong, Guangxu Xun, Jianhui Sun, Changyou Chen, and Aidong Zhang. 2020. GLIMA: Global

and local time series imputation with multi-directional attention learning. In Proceedings of the IEEE International

Conference on Big Data. IEEE, 798–807. DOI:https://doi.org/10.1109/BigData50022.2020.9378408

[77] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. 2013. On the importance of initialization and

momentum in deep learning. In Proceedings of the 30th International Conference on International Conference on Machine

Learning. III–1139–III–1147.

[78] B. Van Scoy, R. A. Freeman, and K. M. Lynch. 2018. The fastest known globally convergent first-order method for

minimizing strongly convex functions. IEEE Control Systems Letters 2, 1 (2018), 49–54.

[79] Sharan Vaswani, F. Bach, and M. Schmidt. 2019. Fast and faster convergence of SGD for over-parameterized models

and an accelerated perceptron. arXiv:1810.07288. Retrieved from https://arxiv.org/abs/1810.07288.

[80] Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. 2017. The marginal value of adap-

tive gradient methods in machine learning. In Proceedings of the Advances in Neural Information Processing Systems.

Curran Associates, Inc., 4148–4158. Retrieved from http://papers.nips.cc/paper/7003-the-marginal-value-of-adaptive-

gradient-methods-in-machine-learning.pdf.

[81] Zeke Xie, Li Yuan, Zhanxing Zhu, and Masashi Sugiyama. 2021. Positive-negative momentum: Manipulating stochas-

tic gradient noise to improve generalization. In Proceedings of the 38th International Conference on Machine Learning.

Marina Meila and Tong Zhang (Eds.), PMLR, 11448–11458.

[82] Guangxu Xun, Kishlay Jha, Jianhui Sun, and Aidong Zhang. 2020. Correlation networks for extreme multi-label text

classification. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.

[83] Guangxu Xun, Kishlay Jha, Ye Yuan, Yaqing Wang, and Aidong Zhang. 2019. MeSHProbeNet: A self-attentive probe

net for MeSH indexing. Bioinformatics 35, 19 (2019), 3794–3802. DOI:https://doi.org/10.1093/bioinformatics/btz142

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

https://doi.org/10.1016/0041-5553(64)90137-5
https://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1811.03600
https://doi.org/10.1145/267460.267466
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/WACV.2017.58
http://arxiv.org/abs/1708.07120
http://arxiv.org/abs/1708.07120
https://openreview.net/pdf?id=BJij4yg0Z
https://openreview.net/forum?id=B1Yy1BxCZ
https://doi.org/10.1145/3534678.3539298
https://doi.org/10.1145/3447548.3467287
https://doi.org/10.1109/ICHI.2019.8904638
https://doi.org/10.1109/BigData50022.2020.9378408
https://arxiv.org/abs/1810.07288
http://papers.nips.cc/paper/7003-the-marginal-value-of-adaptive-gradient-methods-in-machine-learning.pdf
https://doi.org/10.1093/bioinformatics/btz142

Scheduling Hyperparameters to Improve Generalization 29:37

[84] Yan Yan, Tianbao Yang, Zhe Li, Qihang Lin, and Yi Yang. 2018. A unified analysis of stochastic momentum methods

for deep learning. In Proceedings of the IJCAI. 2955–2961. DOI:https://doi.org/10.24963/ijcai.2018/410

[85] Jian Zhang and Ioannis Mitliagkas. 2018. YellowFin and the Art of Momentum Tuning. arXiv:1706.03471. Retrieved

from https://arxiv.org/abs/1706.03471.

[86] Wei Zhang, Suyog Gupta, Xiangru Lian, and Ji Liu. 2016. Staleness-aware async-SGD for distributed deep learning

(IJCAI’16). AAAI Press, 2350–2356.

[87] Z. Zhu and L. Orecchia. 2017. Linear coupling: An ultimate unification of gradient and mirror descent. In Proceedings

of the ITCS.

Received 6 September 2021; revised 23 March 2022; accepted 13 May 2022

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 29. Publication date: March 2023.

https://doi.org/10.24963/ijcai.2018/410
http://arxiv.org/abs/1706.03471
https://arxiv.org/abs/1706.03471

