

BACKGROUND

The minimax problems arise in many machine learning a such as,

- Adversarial Training

 $\min_{w} \sum_{i=1} \max_{y_i \in \mathcal{Y}} \mathcal{L}\left(f\left(a_i + y_i; w\right), b_i\right), \mathcal{Y} = \{y_i \in \mathbb{R}^d \mid \|y_i\|_{\infty}$

- Generative adversarial network $\min_{G} \max_{D} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(\boldsymbol{x}))] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{$
- Policy Evaluation

 $\min_{\theta \in \Theta} \max_{\omega \in \mathbb{R}^d} \mathbb{E}_{s,a,s'} \left| \langle \delta \nabla_{\theta} V(s;\theta), \omega \rangle - \frac{1}{2} \omega^T \left(\nabla_{\theta} V(s;\theta) \nabla_{\theta} V(s;\theta) \nabla_{\theta} V(s;\theta) \right) \right|$

- Online AUPRC maximization

$$\min_{\mathbf{w}\in\mathbb{R}^{d},(a,b)\in\mathbb{R}^{2}} \max_{\alpha\in\mathbb{R}} f(\mathbf{w},a,b,\alpha)$$

$$f(\mathbf{w},a,b,\alpha) = (1-p)(h(\mathbf{w};\mathbf{x})-a)^{2}\mathbb{I}_{[y=1]} + p(h(\mathbf{w};\mathbf{x})$$

$$+ 2(1+\alpha)\left(ph(\mathbf{w};\mathbf{x})\mathbb{I}_{[y=-1]} - (1-p)h(\mathbf{w};\mathbf{x})\mathbb{I}_{[y=1]}\right) -$$

- Fair Classification

$$\min_{w} \max_{y \in \mathcal{Y}} \left\{ \sum_{i=1}^{3} y_i \mathcal{L}_i(w) + g(w) - h(y) \right\}, \mathcal{Y} = \left\{ y_i \ge 0, \right\}$$

CHALLENGES

To address the large-scale distributed data challenges tiple clients with communication-efficient distributed training, federated learning (FL) is gaining popularity. Many optimization algorithms for minimax problems have been developed in the centralized setting. Nonetheless, the algorithm for minimax problems under FL is still underexplored. In this paper, we study a class of federated nonconvex minimax optimization problems. We focus on the most common minimax settings and propose novel FL algorithms (FedSGDA+ and FedSGDA-M) and obtain the best known complexity results for various settings. For nonconvexconcave problems, we propose FedSGDA+ and reduce the communication complexity to $O(\varepsilon^{-6})$. Under nonconvex-strongly-concave and nonconvex-PL minimax settings, we prove that FedSGDA-M has the best-known sample complexity of $O(\kappa^3 N^{-1} \varepsilon^{-3})$ and the best-known communication complexity of $O(\kappa^2 \varepsilon^{-2})$. FedSGDA-M is the first algorithm to match the best sample complexity $O(\varepsilon^{-3})$.

SOLVING A CLASS OF NON-CONVEX MINIMAX **OPTIMIZATION IN FEDERATED LEARNING** Xidong Wu^{*1}, Jianhui Sun^{*2}, Zhengmian Hu³, Aidong Zhang², Heng Huang³ ¹ University of Pittsburgh ² University of Virginia ³ University of Maryland

EXISTING METHODS

$$\leq \varepsilon, i \in [n] \}$$

$$(G(\boldsymbol{z})))$$

$$V(s;\theta)^T \big) \, \omega \bigg|$$

$$(1-b)^{2}\mathbb{I}_{[y=-1]}$$

 $\sum y_i = 1$

Complexity comparison of existing nonconvex federated minimax algorithms for finding an ε -stationary point. Sample complexity is the total number of the First-order Oracle (IFO) to reach an ε -stationary point. Communication complexity denotes the total number of back-and-forth communication times between clients and the server. Here, N is the number of clients, and $\kappa = L_f/\mu$ is the condition number.

S1 - Nonconvex Concave, S2 - Nonconvex Strongly Concave - Nonconvoy PI

Type	Algorithm	Sample	Communication
S1	Local SGDA+ ¹	$O\left(N^{-1}\varepsilon^{-8}\right)$	$O(\varepsilon^{-7})$
S1	FedSGDA+ ¹	$O\left(N^{-1}\varepsilon^{-8}\right)$	$O\left(\varepsilon^{-6}\right)$
S2	Local SGDA ²	$O(\kappa^4 N^{-1} \varepsilon^{-4})$	$O(\kappa^3 \varepsilon^{-3})$
S2	Momentum SGDA ²	$O(\kappa^4 N^{-1} \varepsilon^{-4})$	$O(\kappa^3 \varepsilon^{-3})$
S2	$FEDNEST^2$	$O(\kappa^3 \varepsilon^{-4})$	$O\left(\kappa^2 \varepsilon^{-4}\right)$
S2	FedSGDA ²	$O\left(\kappa^{3}N^{-1}\varepsilon^{-3}\right)$	$O\left(\kappa^2 \varepsilon^{-2}\right)$
S3	Local SGDA ³	$O\left(\kappa^4 N^{-1} \varepsilon^{-4}\right)$	$O(\kappa^3 \varepsilon^{-3})$
S3	Momentum SGDA ³	$O(\kappa^4 N^{-1} \varepsilon^{-4})$	$O(\kappa^3 \varepsilon^{-3})$
S3	SAGDA ³	$O(N^{-1}\varepsilon^{-4})$	$O(\varepsilon^{-2})$
S3	FedSGDA ³	$O(\hat{\kappa}^3 N^{-1} \varepsilon^{-3})$	$O\left(\kappa^2 \varepsilon^{-2}\right)$

FEDSGDA+ ALGORITHM

Algorithm 1 FedSGDA+ Algorithm			
1:	for $t = 0, 1, \dots, T - 1$ do		
2:	for $i = 1, 2,, N$ do		
3:	Local Update:		
4:	for $q = 0, 1, \dots, Q - 1$ do		
5:	Draw mini-batch samples $\mathcal{B}_{t,q}^i$		
	from D_i locally		
6:	$x_{t,q+1}^{i} = x_{t,q}^{i} - \hat{c} \nabla_{x} f_{i}(x_{t,q}^{i}, y_{t,q}^{i};$		
7:	$y_{t,q+1}^i = y_{t,q}^i + c\nabla_y f_i(\tilde{x}_k, y_{t,q}^i; \mathcal{B})$		
8:	end for		
9:	end for		
10:	$x_{t+1,0}^{i} = \bar{x}_{t+1} = \bar{x}_t + \eta_x \frac{1}{N} \sum_{i=1}^{N} (x_{t,0}^{i})$		
11:	$y_{t+1,0}^{i} = \bar{y}_{t+1} = \bar{y}_{t} + \eta_y \frac{1}{N} \sum_{i=1}^{N} (y_{t,Q}^{i})$		
12:	if $mod (t+1, S) = 0$ then		
13:	k = k + 1		
14:	$\tilde{x}_k = \bar{x}_{t+1}$		
15:	end if		
16:	end for		
17:	Output: <i>x</i> and <i>y</i> chosen uniformly rat		

$$g_{q} = \{\xi_{i}^{j}\}_{j=1}^{b} \text{ with } |\mathcal{B}_{t}^{i}| = b$$

$$\{\mathcal{B}_{t,q}^{i}\}_{j=1}^{b}$$

 $Q_{,Q} - \bar{x}_t)$ $(y_2 - \bar{y}_t)$

andom from $\{(\bar{x}_t, \bar{y}_t)\}_{t=1}^T$.

FEDSGDA-M ALGORITHM

Algorithm 2 FedSGDA-M Algorithm

1:	for $t = 1, 2,, T$ do
2:	for $i = 1, 2,, N$ do
3:	if $mod(t,Q) = 0$
4:	Sever Update:
5:	$u_t^i = \bar{u}_t = \frac{1}{N} \sum_{j=1}^N u_j^N$
6:	$x_t^i = \bar{x}_t = \frac{1}{N} \sum_{j=1}^N x_j$
7:	$y_t^i = \bar{y}_t = \frac{1}{N} \sum_{j=1}^N y_t^{N-1} = \frac{1}{N} \sum_{j=1}^N$
8:	else
9:	$x_t^i = x_{t-1}^i - \hat{c}\eta u_t^i$
10:	end if
11:	Draw mini-batch sa
12:	$u_{t+1}^i = \nabla_x f_i(x_t^i, y_t^i;$
13:	$v_{t+1}^i = \nabla_y f_i(x_t^i, y_t^i);$
14:	end for
15:	end for

then

- $\sum_{\substack{j=1\\N\\i=1}}^{N} u_t^j, v_t^i = \bar{v}_t = \frac{1}{N} \sum_{j=1}^{N} v_t^j$ $(y_{t-1}^{j} + c\eta v_{t}^{j}))$
- $\dot{y}_{t}^{i}, y_{t}^{i} = y_{t-1}^{i} + c\eta v_{t}^{i}$
- samples $\mathcal{B}_t^i = \{\xi_i^j\}_{j=1}^b$ with $|\mathcal{B}_t^i| = b$