
SOLVING A CLASS OF NON-CONVEX MINIMAX
OPTIMIZATION IN FEDERATED LEARNING

Xidong Wu∗1, Jianhui Sun∗2, Zhengmian Hu3, Aidong Zhang2, Heng Huang3

1 University of Pittsburgh 2 University of Virginia 3 University of Maryland

BACKGROUND
The minimax problems arise in many machine learning applications
such as,
- Adversarial Training

min
w

n∑
i=1

max
yi∈Y

L (f (ai + yi;w) , bi) ,Y = {yi ∈ Rd | ∥yi∥∞ ≤ ε, i ∈ [n]}

- Generative adversarial network
min
G

max
D

Ex∼pdata (x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

- Policy Evaluation

min
θ∈Θ

max
ω∈Rd

Es,a,s′

[
⟨δ∇θV (s; θ), ω⟩ − 1

2
ωT

(
∇θV (s; θ)∇θV (s; θ)T

)
ω

]
- Online AUPRC maximization

min
w∈Rd,(a,b)∈R2

max
α∈R

f(w, a, b, α)

f(w, a, b, α) = (1− p)(h(w;x)− a)2I[y=1] + p(h(w;x)− b)2I[y=−1]

+ 2(1 + α)
(
ph(w;x)I[y=−1] − (1− p)h(w;x)I[y=1]

)
− p(1− p)α2

- Fair Classification

min
w

max
y∈Y

{
3∑

i=1

yiLi(w) + g(w)− h(y)

}
,Y =

{
yi ≥ 0,

3∑
i=1

yi = 1

}

CHALLENGES
To address the large-scale distributed data challenges across mul-
tiple clients with communication-efficient distributed training, fed-
erated learning (FL) is gaining popularity. Many optimization al-
gorithms for minimax problems have been developed in the cen-
tralized setting. Nonetheless, the algorithm for minimax problems
under FL is still underexplored. In this paper, we study a class of
federated nonconvex minimax optimization problems.
We focus on the most common minimax settings and propose novel
FL algorithms (FedSGDA+ and FedSGDA-M) and obtain the best
known complexity results for various settings. For nonconvex-
concave problems, we propose FedSGDA+ and reduce the commu-
nication complexity to O(ε−6). Under nonconvex-strongly-concave
and nonconvex-PL minimax settings, we prove that FedSGDA-M
has the best-known sample complexity of O(κ3N−1ε−3) and the
best-known communication complexity of O(κ2ε−2). FedSGDA-M
is the first algorithm to match the best sample complexity O(ε−3).

EXISTING METHODS
Complexity comparison of existing nonconvex federated minimax
algorithms for finding an ε-stationary point. Sample complex-
ity is the total number of the First-order Oracle (IFO) to reach an
ε-stationary point. Communication complexity denotes the total
number of back-and-forth communication times between clients
and the server. Here, N is the number of clients, and κ = Lf/µ
is the condition number.
S1 - Nonconvex Concave, S2 - Nonconvex Strongly Concave
S3 - Nonconvex PL

Type Algorithm Sample Communication
S1 Local SGDA+1 O

(
N−1ε−8

)
O(ε−7)

S1 FedSGDA+1 O
(
N−1ε−8

)
O
(
ε−6

)
S2 Local SGDA2 O

(
κ4N−1ε−4

)
O(κ3ε−3)

S2 Momentum SGDA2 O
(
κ4N−1ε−4

)
O(κ3ε−3)

S2 FEDNEST2 O
(
κ3ε−4

)
O
(
κ2ε−4

)
S2 FedSGDA2 O

(
κ3N−1ε−3

)
O
(
κ2ε−2

)
S3 Local SGDA3 O

(
κ4N−1ε−4

)
O(κ3ε−3)

S3 Momentum SGDA3 O
(
κ4N−1ε−4

)
O(κ3ε−3)

S3 SAGDA3 O
(
N−1ε−4

)
O(ε−2)

S3 FedSGDA3 O
(
κ3N−1ε−3

)
O
(
κ2ε−2

)
FEDSGDA+ ALGORITHM

Algorithm 1 FedSGDA+ Algorithm

1: for t = 0, 1, . . . , T − 1 do
2: for i = 1, 2, . . . , N do
3: Local Update:
4: for q = 0, 1, . . . , Q− 1 do
5: Draw mini-batch samples Bi

t,q = {ξji }bj=1 with |Bi
t| = b

from Di locally
6: xi

t,q+1 = xi
t,q − ĉ∇xfi(x

i
t,q, y

i
t,q;Bi

t,q)

7: yit,q+1 = yit,q + c∇yfi(x̃k, y
i
t,q;Bi

t,q)
8: end for
9: end for

10: xi
t+1,0 = x̄t+1 = x̄t + ηx

1
N

∑N
i=1(x

i
t,Q − x̄t)

11: yit+1,0 = ȳt+1 = ȳt + ηy
1
N

∑N
i=1(y

i
t,Q − ȳt)

12: if mod (t+ 1, S) = 0 then
13: k = k + 1
14: x̃k = x̄t+1

15: end if
16: end for
17: Output: x and y chosen uniformly random from {(x̄t, ȳt)}Tt=1.

FEDSGDA-M ALGORITHM

Algorithm 2 FedSGDA-M Algorithm

1: for t = 1, 2, . . . , T do
2: for i = 1, 2, . . . , N do
3: if mod (t, Q) = 0 then
4: Sever Update:
5: ui

t = ūt =
1
N

∑N
j=1 u

j
t , vit = v̄t =

1
N

∑N
j=1 v

j
t

6: xi
t = x̄t =

1
N

∑N
j=1(x

j
t−1 − ĉηuj

t )

7: yit = ȳt =
1
N

∑N
j=1(y

j
t−1 + cηvjt )

8: else
9: xi

t = xi
t−1 − ĉηui

t, yit = yit−1 + cηvit
10: end if
11: Draw mini-batch samples Bi

t = {ξji }bj=1 with |Bi
t| = b

12: ui
t+1 = ∇xfi(x

i
t, y

i
t;Bi

t) + (1− α)(ui
t −∇xfi(x

i
t−1, y

i
t−1;Bi

t))
13: vit+1 = ∇yfi(x

i
t, y

i
t;Bi

t) + (1− β)(vit −∇yfi(x
i
t−1, y

i
t−1;Bi

t))
14: end for
15: end for

EXPERIMENTS

Figure 1: Cifar10 Fair Classification Figure 2: Tiny ImageNet

Figure 3: CIFAR10 AUROC Figure 4: Tiny ImageNet


