Solving a Class of Non-Convex Minimax OPTIMIZATION IN FEDERATED LEARNING
 Xidong Wu*1, Jianhui Sun*2, Zhengmian Hu ${ }^{3}$, Aidong Zhang ${ }^{2}$, Heng Huang ${ }^{3}$

University of Pittsburgh ${ }^{2}$ University of Virginia ${ }^{3}$ University of Maryland

BACKGROUND

The minimax problems arise in many machine learning applications such as,

- Adversarial Training
$\min _{w} \sum_{i=1}^{n} \max _{y_{i} \in \mathcal{Y}} \mathcal{L}\left(f\left(a_{i}+y_{i} ; w\right), b_{i}\right), \mathcal{Y}=\left\{y_{i} \in \mathbb{R}^{d} \mid\left\|y_{i}\right\|_{\infty} \leq \varepsilon, i \in[n]\right\}$
Generative adversarial network

$$
\min _{G} \max _{D} \mathbb{E}_{\boldsymbol{x} \sim p_{\text {data }}(\boldsymbol{x})}[\log D(\boldsymbol{x})]+\mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1-D(G(\boldsymbol{z})))]
$$

Policy Evaluation
$\min _{\theta \in \Theta} \max _{\omega \in \mathbb{R}^{d}} \mathbb{E}_{s, a, s^{\prime}}\left[\left\langle\delta \nabla_{\theta} V(s ; \theta), \omega\right\rangle-\frac{1}{2} \omega^{T}\left(\nabla_{\theta} V(s ; \theta) \nabla_{\theta} V(s ; \theta)^{T}\right) \omega\right]$
Online AUPRC maximization
$\min _{\mathbf{w} \in \mathbb{R}^{d},(a, b) \in \mathbb{R}^{2}} \max _{\alpha \in \mathbb{R}} f(\mathbf{w}, a, b, \alpha)$
$f(\mathbf{w}, a, b, \alpha)=(1-p)(h(\mathbf{w} ; \mathbf{x})-a)^{2} \mathbb{I}_{[y=1]}+p(h(\mathbf{w} ; \mathbf{x})-b)^{2} \mathbb{I}_{[y=-1]}$ $+2(1+\alpha)\left(p h(\mathbf{w} ; \mathbf{x}) \mathbb{I}_{[y=-1]}-(1-p) h(\mathbf{w} ; \mathbf{x}) \mathbb{I}_{[y=1]}\right)-p(1-p) \alpha^{2}$

- Fair Classification
$\min _{w} \max _{y \in \mathcal{Y}}\left\{\sum_{i=1}^{3} y_{i} \mathcal{L}_{i}(w)+g(w)-h(y)\right\}, \mathcal{Y}=\left\{y_{i} \geq 0, \sum_{i=1}^{3} y_{i}=1\right\}$

CHALLENGES

To address the large-scale distributed data challenges across multiple clients with communication-efficient distributed training, federated learning (FL) is gaining popularity. Many optimization algorithms for minimax problems have been developed in the centralized setting. Nonetheless, the algorithm for minimax problems under FL is still underexplored. In this paper, we study a class of federated nonconvex minimax optimization problems.
We focus on the most common minimax settings and propose novel FL algorithms (FedSGDA+ and FedSGDA-M) and obtain the best known complexity results for various settings. For nonconvexconcave problems, we propose FedSGDA+ and reduce the communication complexity to $O\left(\varepsilon^{-6}\right)$. Under nonconvex-strongly-concave and nonconvex-PL minimax settings, we prove that FedSGDA-M has the best-known sample complexity of $O\left(\kappa^{3} N^{-1} \varepsilon^{-3}\right)$ and the best-known communication complexity of $O\left(\kappa^{2} \varepsilon^{-2}\right)$. FedSGDA-M is the first algorithm to match the best sample complexity $O\left(\varepsilon^{-3}\right)$.

Existing Methods

Complexity comparison of existing nonconvex federated minimax algorithms for finding an ε-stationary point. Sample complexity is the total number of the First-order Oracle (IFO) to reach an ε-stationary point. Communication complexity denotes the total number of back-and-forth communication times between clients and the server. Here, N is the number of clients, and $\kappa=L_{f} / \mu$ is the condition number
S1 - Nonconvex Concave, S2 - Nonconvex Strongly Concave S3 - Nonconvex PL

S3-Nonconvex PL			
Type	Algorithm	Sample	Communication
S1	Local SGDA+ 1	$O\left(N^{-1} \varepsilon^{-8}\right)$	$O\left(\varepsilon^{-7}\right)$
S1	FedSGDA+ ${ }^{1}$	$O\left(N^{-1} \varepsilon^{-8}\right)$	$O\left(\varepsilon^{-6}\right)$
S2	Local SGDA 2	$O\left(\kappa^{4} N^{-1} \varepsilon^{-4}\right)$	$O\left(\kappa^{3} \varepsilon^{-3}\right)$
S2	Momentum SGDA 2	$O\left(\kappa^{4} N^{-1} \varepsilon^{-4}\right)$	$O\left(\kappa^{3} \varepsilon^{-3}\right)$
S2	FEDNEST 2	$O\left(\kappa^{3} \varepsilon^{-4}\right)$	$O\left(\kappa^{2} \varepsilon^{-4}\right)$
S2	FedSGDA 2	$O\left(\kappa^{3} N^{-1} \varepsilon^{-3}\right)$	$O\left(\kappa^{2} \varepsilon^{-2}\right)$
S3	Local SGDA 3	$O\left(\kappa^{4} N^{-1} \varepsilon^{-4}\right)$	$O\left(\kappa^{3} \varepsilon^{-3}\right)$
S3	Momentum SGDA 3	$O\left(\kappa^{4} N^{-1} \varepsilon^{-4}\right)$	$O\left(\kappa^{3} \varepsilon^{-3}\right)$
S3	SAGDA 3	$O\left(N^{-1} \varepsilon^{-4}\right)$	$O\left(\varepsilon^{-2}\right)$
S3	FedSGDA 3	$O\left(\kappa^{3} N^{-1} \varepsilon^{-3}\right)$	$O\left(\kappa^{2} \varepsilon^{-2}\right)$

FedSGDA + Algorithm

FedSGDA-M Algorithm

Algorithm 2 FedSGDA-M Algorithm	
1: for $t=1,2, \ldots, T$ do	
2:	for $i=1,2, \ldots, N$ do
3:	if $\bmod (t, Q)=0$ then
4:	Sever Update:
5:	$u_{t}^{i}=\bar{u}_{t}=\frac{1}{N} \sum_{j=1}^{N} u_{t}^{j}, v_{t}^{i}=\bar{v}_{t}=\frac{1}{N} \sum_{j=1}^{N} v_{t}^{j}$
6:	$x_{t}^{i}=\bar{x}_{t}=\frac{1}{N} \sum_{j=1}^{N}\left(x_{t-1}^{j}-\hat{c} \eta u_{t}^{j}\right)$
7:	$y_{t}^{i}=\bar{y}_{t}=\frac{1}{N} \sum_{j=1}^{N}\left(y_{t-1}^{j}+c \eta v_{t}^{j}\right)$
8:	else
9:	$x_{t}^{i}=x_{t-1}^{i}-\hat{c} \eta u_{t}^{i}, y_{t}^{i}=y_{t-1}^{i}+c \eta v_{t}^{i}$
10:	end if
11:	Draw mini-batch samples $\mathcal{B}_{t}^{i}=\left\{\xi_{i}^{j}\right\}_{j=1}^{b}$ with $^{j}\left\|\mathcal{B}_{t}^{i}\right\|=b$
12:	$u_{t+1}^{i}=\nabla_{x} f_{i}\left(x_{t}^{i}, y_{t}^{i} ; \mathcal{B}_{t}^{i}\right)+(1-\alpha)\left(u_{t}^{i}-\nabla_{x} f_{i}\left(x_{t-1}^{i}, y_{t-1}^{i} ; \mathcal{B}_{t}^{i}\right)\right)$
13:	$v_{t+1}^{i}=\nabla_{y} f_{i}\left(x_{t}^{i}, y_{t}^{i} ; \mathcal{B}_{t}^{i}\right)+(1-\beta)\left(v_{t}^{i}-\nabla_{y} f_{i}\left(x_{t-1}^{i}, y_{t-1}^{i} ; \mathcal{B}_{t}^{i}\right)\right)$
14:	end for
15:	end for

EXPERIMENTS

Figure 1: Cifar10 Fair Classification

mmunication Round
Figure 3: CIFAR10 AUROC

Figure 2: Tiny ImageNet

Figure 4: Tiny ImageNet

