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BACKGROUND

Conditional stochastic optimization has applications in a wide
range of machine learning tasks, such as invariant learning, AUPRC
maximization, and meta-learning.

- Model-Agnostic Meta-Learning (MAML)

In meta-learning, we attempt to train models that can efficiently
adapt to unseen tasks via learning with meta data from similar
tasks. When the tasks are distributed at different clients, a federated
version of MAML would be beneficial to leverage information from
all workers to improve the model performance on the downstream
tasks.
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- Online AUPRC Maximization In AUPRC maximization, AP loss is
used as the loss function, instead of cross-entropy loss since AP is
the surrogate function of AUPRC and cross-entropy is correspond-

ing to accuracy. By directly optimizing AP loss, model performance
is improved with the metric of AUPRC.

: ; epl(y = 1)L (x5 27, 2)
“36,\,1) ¢ (LC; Z_l_, Z)

AP = Let D+

CHALLENGES

To address the large-scale distributed data challenges across mul-
tiple clients with communication-efficient distributed training, fed-
erated learning (FL) is gaining popularity. Many optimization al-
gorithms for CSO problems have been developed in the centralized
setting. Nonetheless, the algorithm for CSO problems under FL is
still underexplored.

;N
min F(x) := =~ Z en fen (K,

nlenGpn (2,87)) (1)

reX

Federated conditional stochastic optimization subsumes the stan-
dard federated learning optimization as a special case when the
inner-layer function g, (z,£") = x. In addition, federated stochas-
tic compositional optimization is similar to federated conditional
stochastic optimization given that both problems contain two-layer
nested expectations. However, they are fundamentally different.
In federated stochastic compositional optimization, the inner ran-
domness 7 and the outer randomness ¢ are independent and data
samples of the inner layer are available directly from 7 (instead of
a conditional distribution as in Problem (1)). Therefore, when ran-
domnesses 1 and § are independent and gy (z,-) = g/ (x), (1) is

converted into federated stochastic compositional optimization.
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EXISTING METHODS

Summary of complexity results of proposed federated conditional
stochastic optimization algorithms to reach an e-stationary point.
Sample complexity is defined as the number of calls to the First-
order Oracle (IFO) by clients to reach an e-stationary point. Com-
munication complexity denotes the total number of back-and-forth
communication rounds between each client and the central server

required to reach an e-stationary point.
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Algorithm 1 FCSG and FCSG-M Algorithm

1: Input: Parameters: 7', momentum weight 3, learning rate o, the
number of local updates ¢, inner batch size m and outer batch
size b, as well as the initial outer batch size B ;

2: Initialize: z{ = 9o = + Z],j:l ry. Draw B samples
of {&4,- - 7@’:3} and draw m samples By, {nZ };n:l
from P(n" | ;) for each &, € {&'y, -, &'ghul =

B M. (T n
%21:1 VE (370750,7;7 O,i)'

3: fort=1,2,...,T do

4. forn=1,2,...,N do

5: if mod (¢,q) = 0 then

6: Server Update:

7: u?:ﬂt:%2£1u?

8: Ty =Ty = % mr]:[—1(x?—1 — auy')

9: else

10: Ty = x| — auy

11: end if

12: Draw b samples of {£;'1, -+, &'y }

13: Draw m samples B}, = {77,;’;}:1: , from P(n" | £';) for each
& €80, f?b}

14: g = = ZZ . VF”(a;t &8ss B

15: ”U/?’_|_1 — (1 — 5)1&? + % Zizl VF”(QZ‘?, ggzv BZ@)

16:  end for
17: end for
18: Output: x chosen uniformly random from {z;};_;.
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Algorithm 2 Acc-FCSG-M Algorithm

1: Initialize: Draw B samples of {&7,--- €%} and draw m sam-
ples By ; = {77:;};”:1 from P(n™ | £7) for each £ € {£0, -+ R},
thenu} = L 37 | VF™(a8; €5, By,) for n € [N].
fort=1,2,...,T do
forn=1,2,..., Ndo
if mod (¢,q) = 0 then

1 N n n __
szizlut/xt —

U?’ — ?_Lt .
else
Tip = Ty 1 — QU
end if
mn mn mn -
Draw b samples of {7, - ,§tﬁb}, draw m samples B}, =

{77% };nzl from P(n" | £;) for each £, € {1, -+ , &5}
T b A'n/ T T T T
Uy = % Z@-ﬂ VE"(x} 351&,@» Bt,z’) + (1 — B)(up —

b An mn . T mn
% D im1 VE"(xyq; ft,iv Bt,z‘))
11: end for
12: end for
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The 5-way-1-shot case over Omniglot Dataset in MAML (Train loss;
Train accuracy; Test loss; Test accuracy)




