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BACKGROUND
Conditional stochastic optimization has applications in a wide
range of machine learning tasks, such as invariant learning, AUPRC
maximization, and meta-learning.
- Model-Agnostic Meta-Learning (MAML)
In meta-learning, we attempt to train models that can efficiently
adapt to unseen tasks via learning with meta data from similar
tasks. When the tasks are distributed at different clients, a federated
version of MAML would be beneficial to leverage information from
all workers to improve the model performance on the downstream
tasks.
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- Online AUPRC Maximization In AUPRC maximization, AP loss is
used as the loss function, instead of cross-entropy loss since AP is
the surrogate function of AUPRC and cross-entropy is correspond-
ing to accuracy. By directly optimizing AP loss, model performance
is improved with the metric of AUPRC.
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CHALLENGES
To address the large-scale distributed data challenges across mul-
tiple clients with communication-efficient distributed training, fed-
erated learning (FL) is gaining popularity. Many optimization al-
gorithms for CSO problems have been developed in the centralized
setting. Nonetheless, the algorithm for CSO problems under FL is
still underexplored.
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Federated conditional stochastic optimization subsumes the stan-
dard federated learning optimization as a special case when the
inner-layer function gnηn(x, ξn) = x. In addition, federated stochas-
tic compositional optimization is similar to federated conditional
stochastic optimization given that both problems contain two-layer
nested expectations. However, they are fundamentally different.
In federated stochastic compositional optimization, the inner ran-
domness η and the outer randomness ξ are independent and data
samples of the inner layer are available directly from η (instead of
a conditional distribution as in Problem (1)). Therefore, when ran-
domnesses η and ξ are independent and gnηn(x, ·) = gnηn(x), (1) is
converted into federated stochastic compositional optimization.

EXISTING METHODS
Summary of complexity results of proposed federated conditional
stochastic optimization algorithms to reach an ε-stationary point.
Sample complexity is defined as the number of calls to the First-
order Oracle (IFO) by clients to reach an ε-stationary point. Com-
munication complexity denotes the total number of back-and-forth
communication rounds between each client and the central server
required to reach an ε-stationary point.
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Algorithm 1 FCSG and FCSG-M Algorithm

1: Input: Parameters: T , momentum weight β, learning rate α, the
number of local updates q, inner batch size m and outer batch
size b, as well as the initial outer batch size B ;

2: Initialize: xn
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3: for t = 1, 2, . . . , T do
4: for n = 1, 2, . . . , N do
5: if mod (t, q) = 0 then
6: Server Update:
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11: end if
12: Draw b samples of {ξnt,1, · · · , ξnt,b}
13: Draw m samples Bn
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16: end for
17: end for
18: Output: x chosen uniformly random from {x̄t}Tt=1.
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Algorithm 2 Acc-FCSG-M Algorithm

1: Initialize: Draw B samples of {ξn1 , · · · , ξnB} and draw m sam-
ples Bn
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2: for t = 1, 2, . . . , T do
3: for n = 1, 2, . . . , N do
4: if mod (t, q) = 0 then
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8: end if
9: Draw b samples of {ξnt,1, · · · , ξnt,b}, draw m samples Bn
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11: end for
12: end for

EXPERIMENTS

The 5-way-1-shot case over Omniglot Dataset in MAML (Train loss;
Train accuracy; Test loss; Test accuracy)


