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Abstract—Given a resource-rich source graph and a resource-
scarce target graph, how can we effectively transfer knowledge
across graphs and ensure a good generalization performance? In
many high-impact domains (e.g., brain networks and molecular
graphs), collecting and annotating data is prohibitively expensive
and time-consuming, which makes domain adaptation an attrac-
tive option to alleviate the label scarcity issue. In light of this, the
state-of-the-art methods focus on deriving domain-invariant graph
representation that minimizes the domain discrepancy. However,
it has recently been shown that a small domain discrepancy loss
may not always guarantee a good generalization performance,
especially in the presence of disparate graph structures and label
distribution shifts. In this paper, we present TRANSNET, a generic
learning framework for augmenting knowledge transfer across
graphs. In particular, we introduce a novel notion named trinity
signal that can naturally formulate various graph signals at
different granularity (e.g., node attributes, edges, and subgraphs).
With that, we further propose a domain unification module
together with a trinity-signal mixup scheme to jointly minimize
the domain discrepancy and augment the knowledge transfer
across graphs. Finally, comprehensive empirical results show
that TRANSNET outperforms all existing approaches on seven
benchmark datasets by a significant margin.

Index Terms—Domain Adaptation, Data Augmentation, Graph
Pre-training Strategies

I. INTRODUCTION

Graph provides a pivotal data structure and a fundamental

abstraction for modeling many complex systems, ranging

from social science to material science, from financial fraud

detection to traffic prediction and many more. The success

of convolutional neural networks (CNNs) [11] for grid data

has inspired the recent development of graph neural networks

(GNNs), which have achieved superior performance on a

variety of graph mining tasks such as node classification,

link prediction, subgraph matching, and network alignment.

Despite the remarkable success, the performance of GNNs is

largely attributed to the abundant and high-quality training

data. However, in many high-impact domains (e.g., brain

networks and molecular graphs), there exist only scarce labels

as the data annotation process is prohibitively expensive and

time-consuming. Therefore, a fundamental problem is how to

transfer knowledge from the resource-rich source graph to the

resource-scarce target graph and ensure a good generalization

performance.

§This work is done as an undergraduate research assistant in Virginia
Tech.

Domain adaptation is an attractive solution to tackle this

problem, which has received a surge of attention [7, 22] in

the graph mining community. The general philosophy is to

learn domain-invariant representations that do not only achieve

satisfactory source domain performances, but also generalize

well to the label-scarce target domain. Abundant algorithms [5]

and statistical guarantees [1, 2] have been proposed specifically

for the independent and identically distributed (i.i.d.) data.

However, how to generalize these algorithms and theoretical

results to the graph-structured data (i.e., instances are apparently

non-iid due to the interconnecting nodes and edges) with

heterogeneous graph signals (e.g., node, edges, motifs) is

under-explored. Moreover, recent studies [23] have shown that

domain-invariant representation may not be able to guarantee

a good generalization performance, especially in the presence

of disparate graph structures and label distribution shifts,

which motivates us to propose novel approach with rigorous

guarantees to improve the generalization performance of GNNs

across graphs.
Towards this goal, we identify the following two challenges:

C1. Graph Discrepancy: how to eliminate negative transfer

when the source graph and target graph exhibit disparate

structures and feature spaces? C2. Signal Heterogeneity: how

to effectively characterize and leverage graph signals which

are heterogeneous (e.g., node, edges, motifs) in both source

and target graphs to improve the generalization performance?
In this paper, we propose a generic learning framework

named TRANSNET for augmenting knowledge transfer across

graphs and show that our proposed approach achieves superior

performances universally on all backbone GNNs. The main idea

behind our method is a principled way to unify the heteroge-

neous signals on disparate graphs. To address C1, we develop bi-

level gradient reversal layers that learn invariant representations

to unify the structure and feature space of the source and target

graphs. To address C2, we firstly introduce a novel notion

named trinity signal that can naturally formulate various graph

signals (e.g., node attributes, edges, and subgraphs). That is to

say, we can transform heterogeneous graph signals into a unified

format. Building upon this, we propose a data augmentation

scheme that automatically conducts interpolation and mixup

upon trinity signals to regularize the backbone GNNs with a

smooth decision boundary. In general, our contributions are

summarized as follows.

• Problem. We formalize the graph signal domain adap-
tation problem and identify multiple unique challenges
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inspired by the real applications.

• Algorithm. We propose a novel method named

TRANSNET that (1) unifies the heterogeneous graph

signals and dissipate feature spaces and (2) automatically

augments the knowledge transfer via trinity-signal mixup.

• Evaluation. We systematically evaluate the performance

of TRANSNET on seven real graphs by comparing them

with eleven baseline models, which verifies the efficacy of

TRANSNET. We find that TRANSNET largely alleviates

the negative transfer issue and leads up to 9.45% precision

improvement over the state-of-the-art methods.

• Reproducibility. We publish our data and code at https:

//github.com/yuzhenmao/TransNet

The rest of our paper is structured as follows. The problem

definition is introduced in Section II, followed by the discussion

of TRANSNET in Section III. Experimental results are reported

in Section IV. In Section V, we review the existing literature

before we conclude the paper in Section VI.

II. PROBLEM DEFINITION

In the setting of domain adaptation across graphs, we denote

the source graph Gs and the target graph Gt in the form of

triplets, i.e. Gs = (Vs, Es,Xs) and Gt = (Vt, Et,Xt), where

Vs (Vt) represents the set of nodes, Es (Et) represents the

set of edges, and Xs (Xt) represents the node features in

Gs (Gt). Moreover, we denote the adjacency matrices of Gs
and Gt as As and At correspondingly. The goal of this paper

is to translate the relevant and complementary information

from the source graph to the target graph, by addressing graph

discrepancy and signal heterogeneity.

: Source Nodes
: Target Nodes
: Edges

Graph Discrepancy

Structural 
Discrepancy

Feature 
Discrepancy 

Entity Signal

Signal Heterogeneity

Link SignalLink Signal

Signal Heterogeneity

Entity Signal

Figure 1. An illustrative example of domain adaptation across DBLP graph
and Microsoft Academic Graph.

Problem Definition We consider transferring knowledge

learned from the source domain(s) to a target domain with

limited labels. Fig 1 presents an illustrative example, which

visualizes knowledge transfer from the DBLP Graph (Gs) to the

Microsoft Academic Graph (Gt). Here, both source and target

domain data could be modeled as graphs. As shown in Fig 1,

there are two obstacles, including graph discrepancy and signal

heterogeneity during graph domain adaptation. On the one hand,

real-world graphs are complex and composed of heterogeneous

signals, including entity signals (e.g., nodes, subgraphs) and the

corresponding link signals between them. On the other hand,

graphs across different domains naturally exhibit disparate

distribution in feature representations (e.g., different feature
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Figure 2. The proposed TRANSNET framework.

dimensions in Gs and Gt) and structural organizations (e.g.,

three clusters in Gs while two clusters in Gt). Given that, we

formally define our problem as follows:

Problem 1. Knowledge Transfer across Graphs.

Given: The source graph Gs = (Vs, Es,Xs) with rich node

labels Ys, the target graph Gt = (Vt, Et,Xt) with few-shot

node labels Ỹt ∈ Yt.

Find: Accurate predictions Ŷt of unlabeled examples in the

target graph Gt.
III. METHODOLOGY

We first review graph pre-training strategies and a theoretical

model for domain adaptation before diving into our model.

Graph Pre-training. Graph pre-training strategies [8, 9,

10, 28] provide a powerful tool to parameterize GNNs with-

out label information by predicting easily-accessible graph

signals (e.g., node/edge features, context information [8],

distance2clusters [10]) extracted from the input graph. In

general, the learning objective of existing graph pre-training

strategies can be formulated as follows

argmaxθEs∈G log hθ(s|Ĝ, θ) (1)

where G is the input graph, Ĝ is the corrupted graph with some

masked graph signals s, h(·) is a GNN model with hidden

parameters θ. Open research questions lie in how to effectively

pre-train GNNs in the presence of heterogeneous graph signals.

Domain Adaptation. A domain consists of a distribution

D on space X and a labeling function f : X → [0, 1]. Given

two domains, a source domain 〈Ds, fs〉 and a target domain

〈Dt, ft〉, as well as a hypothesis h : X → {0, 1}, we define

the risk of the hypothesis h(·) w.r.t. a true labeling function

f(·) under distribution D as ε(h) = Ex∼D[|h(x)− f(x)|]. As

a common notion, the empirical risk of a function h(·) on the

source domain is defined as ε̂s(h). Similarly, for the target

domain, we use the parallel notation εt(h), and ε̂t(h). In [1]

and [2], the generalization bound on the target risk in terms

of the empirical source risk and the discrepancy between the

source and target domains is derived as follows

Theorem 1 ([2]). With probability at least 1 − δ, for every

h ∈ H,
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εt(h) ≤ε̂s(h) + 1

2
dHΔH

(
D̂s, D̂t

)
+ λ

+O

(√
d log(m/d) + log(1/δ)

m

)
(2)

where D̂s(D̂t) denotes the empirical distribution induced by

m samples drawn from Ds(Dt); H denotes a hypothesis

class; dHΔH denotes the distance on (D̂s, D̂t) induced by the

symmetric difference hypothesis space; λ denotes the combined

risk of the optimal hypothesis; and the last term is a constant

which does not depend on any particular h(·).

A. A Generic Learning Framework

In the rest of this section, we propose TRANSNET, a generic

learning framework that aims to augment knowledge transfer

from the source graph to the target graph. An overview of

TRANSNET is presented in Fig 2, which consists of two

major modules: M1. Domain Unification and M2. Trinity-
signal Mixup. These two modules are designed to address

C1 and C2, correspondingly. In particular, to address the

graph discrepancy challenge (C1), M1 automatically unifies

the disparate structure and feature distributions of Gs and Gt
into a domain-invariant hidden space; to address the signal

heterogeneity challenge (C2), M2 further unifies the formats of

heterogeneous graph signals and conducts manifold mixup [20]

operation to achieve a smooth decision boundary. We will

further rationale the significance of these two modules with

ablation studies (Section IV-B). In the following subsections,

we dive into the two modules of TRANSNET in detail.

M1. Domain Unification. Learning invariant representa-

tions is crucial for efficient knowledge transfer. One of the

standard adversarial approaches is minimizing the distribution

discrepancy between domains by Gradient Reversal Layer

(GRL) [5]. However, domain adaptation on graph-structured

data naturally exhibits the bi-level discrepancy (i.e., feature

discrepancy and structural discrepancy), which is illustrated in

Figure 1. Different from the previous methods [15, 16, 4], here

we propose a bi-level GRL scheme (shown in M1 of Figure 2)

to unify the structure and feature space discrepancy of different

domains. Firstly, given raw nodes representations xs ∈ Xs and

xt ∈ Xt, we develop domain-specific feature encoder functions

that transform xs and xt to a small domain-invariant hidden

space. To eliminate the feature discrepancy, we implement the

feature encoder function via Multi-Layer Perceptron (MLP)

regularized by GRL. Next, by obtaining the unified node

feature representations, we feed them forward to a shared

Graph Neural Network (GNN) for extracting domain-invariant

structural information, which is also regularized by GRL. By

regularizing feature discrepancy and structural discrepancy via

M1, we are able to encode xs and xt into a domain-invariant

space. In particular, we formulate the loss function Ldomain of

M1 as follow

Ldomain =Uniff + Unifs

= GRL(MLP(xs), MLP(xt))︸ ︷︷ ︸
Uniff : feature discrepancy loss

+GRL(GNN(MLP(xs),As), GNN(MLP(xt),At))︸ ︷︷ ︸
Unifs: structural discrepancy loss

(3)

where Uniff denotes the feature discrepancy loss, Unifs
denotes the structure discrepancy loss. Without M1, down-

stream trinity-signal mixup module would potentially blend

in unnecessarily redundant signals and thus result in negative

transfer [5]. In general, M1 disentangles the domain-specific

information by utilizing bi-level GRL and only keeps the

domain invariant information, which paves the way for trinity-

signal mixup in M2.

M2. Trinity-signal Mixup. As graph-structured data is

complex and hierarchical, it naturally exhibits heterogeneous

signals. To utilize the information encoded in different signals,

existing graph pre-training and domain adaptation approaches

treat each signal separately, e.g., [8] and [9] design different

pre-train tasks for different signals, while [22] applies an

attention scheme to capture the significances of different

signals. This could lead to high learning complexity and limit

the usage of several useful techniques (e.g., mixup [25] and

data poisoning). Here, inspiring from multi-label learning, we

propose a generic data structure named trinity signal to unify

the representation of heterogeneous graph signals with multi-

labels as follows

Definition 1 (Trinity Signal). Given a pair of connected signals

{si, sj} in graph G together with their representations {ei, ej},
the corresponding node labels {yi, yj} and connection property

pij , the trinity signal representation of {si, sj} is defined as:

tij = MLP([ei, ej ]) with multi-labels yij = {yi, yj , pij}, where

[·] denotes the concatenation operation.

In practice, the trinity signals can be generalized to various

graph signals. For instance, when si and sj represents a pair

of nodes, then ei (ej) denotes the node representation, yi (yj)

denotes the node label, pij denotes the weight or proximity

score between si and sj (e.g., edge existence and personalized

PageRank); when si (sj) denotes a (sub)graph [8], similarly,

ei (ej) denotes a (sub)graph representation, yi (yj) denotes a

(sub)graph label, pij denotes the (sub)graph distance between

si and sj (e.g., graph similarity or graph edit distance). In

general, trinity signals simultaneously encode entity signals

(e.g., nodes, subgraphs) and the corresponding link signals in

a principled way.

However, after unifying heterogeneous graph signals, dis-

creteness and non-differentiability still exist in the generated

trinity signals, which leads to sub-optimal performance of the

model [12]. Mixup [25], a widely adopted data augmentation

technique, is a potential approach which has been shown

to improve both generalizability and robustness in various

domains [26]. Motivated by this, we propose a novel graph

mixup strategy named trinity-signal mixup that could be
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conducted upon the trinity graph signals. Formally, given

two trinity signals t and t′ with labels y = {y1, y2, p} and

y′ = {y′1, y′2, p′} respectively, we firstly map the trinity signals

to a latent space by one linear fully connected layer. Then,

a mixup function Mixupλ (t, t
′) generates a new interpolated

trinity signal t̃, where λ ∼ Beta(α, α), for α ∈ (0,∞) [25]:

t̃ = Mixupλ (t, t
′) = λ ∗ t+ (1− λ) ∗ t′ (4)

with labels defined ỹ as:

ỹ = Mixupλ (y,y
′) = {λ ∗ y1 + (1− λ) ∗ y′1,

λ ∗ y2 + (1− λ) ∗ y′2,
λ ∗ p+ (1− λ) ∗ p′}

(5)

We also train a multi-label classifier g(·) which outputs the

label of trinity signals in ŷ:

ŷ = {ŷ1, ŷ2, p̂} = g (Mixupλ (t, t
′)) (6)

We define the loss function of trinity-signal mixup as follows

Lsignal (D, α) = E
(t,y)∼D

E
(t′,y′)∼D

E
λ∼Beta(α,α)

(7)

� (g (Mixupλ (t, t
′)) , Mixupλ (y,y

′))

where D is a specific data distribution, (t,y) and (t′,y′) is a

pair of labeled examples sampled from distribution D, � is a

composite loss function including cross-entropy loss for node

classification and mean squared loss for distance regression.

In general, trinity signals provide high flexibility for the end

users to handle various graph signals at different granularities

(e.g., node-level, edge-level, subgraph-level).

B. Algorithm

The overall objective function is defined as follows

Ltotal = Ldomain + γ ∗ Lsignal (8)

where Ldomain denotes the bi-level GRL loss, Lsignal denotes the

trinity-signal loss, and γ is the hyper-parameter that balances

the contributions of the two terms.

The procedure for TRANSNET training is presented in

Algorithm 1, with Adam as the optimizer. Given the source

graph Gs = (Vs, Es,Xs) with rich labels Ys; the target graph

Gt = (Vt, Et,Xt) with limited labels Ỹt ∈ Yt, we hope to

learn a model predicting the node labels of the target graphs.

IV. EXPERIMENT

In this section, we demonstrate the performance of our

proposed model TRANSNET on seven benchmark datasets by

comparing with eleven state-of-the-art baselines.

A. Experiment Setup

Datasets: We evaluate TRANSNET on seven real-world

undirected graphs, including five paper citation graphs: Mi-

crosoft Academic Graph [15], DBLPv7 [15], DBLPv8 [22],

ACMv9_1 [22], ACMv9_2 [15], where nodes represent papers,

edges represent a citation relation between two linked nodes;

and two co-purchase graphs [14]: Amazon Computers, Amazon

Algorithm 1 The TRANSNET Learning Framework

Require:
(i) a source graph Gs = (Vs, Es,Xs) with rich labels Ys;

(ii) a target graph Gt = (Vt, Et,Xt) with few-shot labels

Ỹt; (iii) parameter k.

Ensure:
Predictions Ŷt of unlabeled examples in Gt

1: Initialize the domain unification model, the trinity-signal

classifier g(·), and the classifier h(·) for the downstream

task in Gt.
2: while not convergent do
3: Compute domain-invariant representations of both Gs

and Gt via domain unification.

4: Generate k trinity signals and apply manifold mixup

based on Eq. 4&5.

5: Update the hidden parameters of the domain unification

model and the trinity-signal classifier g(·) by minimizing

the overall loss function in Eq. 8.

6: end while
7: while not convergent do
8: Fine-tune MLP of the target domain, the GNN and the

classifier h(·) for the downstream task.

9: end while

Photo, where nodes represent goods, edges represent that two

linked goods are frequently bought together. All these seven

datasets use bag-of-words encoded features, and each node

is associated with one label only. In this paper, we use A1,

D1, A2, M2, D2, Comp, Photo to denote ACMv9_1, DBLPv8,

ACMv9_2, Microsoft Academic Graph, DBLPv7, Amazon

Computers, Amazon Photo, respectively.

Comparison Baselines: We compare TRANSNET with five

GNNs, two graph pre-train methods, and four graph transfer

learning methods.

GNNs: GCN [11], GAT [18], GIN [24], GraphSAGE [6] are

four standard graph representation benchmark architectures.

GraphMix [19] is one of the most popular graph mixup model.

Graph Pre-train: GPT [9] pre-trains a GNN by introducing a

self-supervised attributed graph generation task. SelfTask [10]

builds advanced pretext tasks to pre-train the GNN.

Transfer Learning on Graphs: GPA [7] is a transferable active

learning model. DANN [5] is a classical domain adaptation

method with GRL. In our experiment, we use GCN as its

feature extractor. UDAGCN [22] and ACDNE [15] are two

domain adaptation methods for graph structured data.

For a fair comparison, all baselines contain two GNN hidden

layers with d1 = 64 and d2 = 32 for the first and second layers,

respectively. The output dimension of GNN is 16. We conduct

experiments with only five labeled samples in each class of the

target dataset and test based on the rest unlabeled nodes. For

UDAGCN and ACDNE having the constraints of shared input

features, we follow the instruction from the original papers [22,

15] to build a union set for input features between the source

and target domains by setting zeros for unshared features. For

classical GNNs (GCN, GAT, GIN, GraphSage), we directly

train each model on the target domain for 2000 epochs. For
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domain adaptation models (DANN, UDAGCN, ACDNE), after

training from the source datasets, they are fine-tuned on the

target datasets for 1000 epochs.

For TRANSNET, it is firstly pre-trained on the source dataset

for 2000 epochs; then it is fine-tuned on the target dataset

for 800 epochs using limited labeled data in each class. We

use Adam optimizer with learning rate 3e-3. α in the beta-

distribution of trinity-signal mixup is set to 1.0. The output

dimension of MLP in domain unification module is set to

100. Precision is used as the evaluation metric. We run the

experiments with 100 random seeds. The experiments are

performed on a Ubuntu20 machine with 16 3.8GHz AMD

Cores and a single 24GB NVIDIA GeForce RTX3090.

B. Effectiveness

Comparison Results. We compare TRANSNET with eleven

baseline methods across seven real-world undirected graphs.

We show the precision of different methods in Table I.

In general, we have the following observations: (1) Our

proposed TRANSNET consistently outperforms all the baselines

on seven datasets, which demonstrates the generalizability

and effectiveness of our model. Especially, when adapting

knowledge from DBLPv8 to Microsoft Academic Graph with

five labeled samples per class, the improvement is more than

10% comparing with the second best model (DANN). (2)

Classical GNNs have good performance in several datasets

including DBLPv7 and Amazon Computers; but in most

instances, they have relatively lower precision. For example,

in dataset ACMv9_2, with five labeled samples per class,

the best precision is 50.18% achieved by GNN, which is

5% lower than GPT and 14% lower than TRANSNET. The

reason is that these models don’t make use of the additional

knowledge from the source graph, which leads to relatively

worse performance especially when the labeled samples

are limited. (3) Graph pre-train models sometimes achieve

significant improvement: SelfTask and GPA outperform all

classical GNNs in dataset ACMv9_2 and DBLPv7 respectively.

But compared with TRANSNET, they have relatively poor

generalization performance since these pre-train models do not

consider the graph discrepancy so that they cannot make use

of the knowledge from the resource-rich source domains. (4)

Graph transfer learning models such as DANN and UDAGCN

could achieve better performance than classical GNNs and

graph pre-train models. Particularly, DANN outperforms all

the models except TRANSNET in datasets ACMv9_2, Microsoft

Academic Graph, and DBLPv7 with both three or five labeled

samples per class. However, TRANSNET could still beat graph

transfer learning models in every dataset. For example, in

datasets ACMv9_2, Microsoft Academic Graph, and DBLPv7,

TRANSNET outperforms all listed graph transfer learning

models by at least 5% precision. Comparing with graph transfer

learning models, the key advantage of TRANSNET lies in the

trinity-signal mixup that could handle signal heterogeneity and

reduce the learning complexity simultaneously.

Ablation Study. Considering that TRANSNET consists of

various components, we set up the experiments to study the

effect of different components by removing one component

from TRANSNET at a time. The ablation results are presented

in Table II. From the results, we have several interesting

observations. (1) Adding node signals could make a huge

improvement to label prediction precision. (2) Although adding

link signals does not help much in the node classification

task (which is reasonable since link signals have no direct

connection with node signals), it does not reduce the precision

either, which means our model could encode those two signals

well simultaneously. (3) Although removing the target domain

label information could still transfer knowledge, adding target

domain influence during the pre-training does make knowledge

adaptation even better. (4) Both two domain losses help the

model better adapt knowledge from the source to the target

domain, which proves the effectiveness of bi-level GRL in

alleviating the graph discrepancy. (5) Trinity-signal Mixup also

helps the model to adapt knowledge better by at most 4%

(DBLPv8 → Microsoft Academic Graph).

V. RELATED WORK

Pre-Training for Graphs. Graph pre-training generalizes

knowledge to downstream tasks by capturing the structural

and semantic properties of input graphs. The current graph

pre-training strategies can be summarized into two different

categories: 1) Using mutual information maximization between

different graph structures which are generated from various

corruption functions [17]; 2) Utilizing feature generation or

edge generation by masking [9]. Besides, [8] pre-trains a graph

at the level of both individual nodes and the entire graph.

However, these existing methods cannot transfer knowledge

from other domains.

Domain Adaptation. Domain adaptation methods provide

potential approach to efficiently transfer knowledge from the

source graph to the target graph with disparate structures and

label distributions. There are majorly three techniques used

for realizing the Domain Adaptation algorithm: 1) Divergence

based [13, 29]; 2) Adversarial based [5]; 3) Reconstruction

based [3]. Recent researches which apply domain adaptation

techniques to graph dataset [22, 15, 16, 4] only focus on the

setting of shared input feature. To the best of our knowledge,

graph domain adaptation based on two different input spaces

and two output label-sets has received little attention in the

machine learning community.

Mixup for Data Augmentation. Mixup and its variants [25,

20] are interpolation-based and widely-adopted data aug-

mentation techniques for regularizing neural networks. More

recently, mixup is applied to graph dataset. [19] proposes to

train an auxiliary Fully-Connected Network which uses the

node features to implement Manifold Mixup. [27] aims to

train an edge generator through the task of adjacency matrix

reconstruction. [21] mixes the receptive field subgraphs for the

paired nodes. These previous works ignore the mixup in the

link level or need to use additional networks , which is far less

elegant, efficient and accurate.
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Table I
COMPARISON OF DIFFERENT METHODS USING 5 LABELED SAMPLES PER CLASS (% TEST PRECISION).

Source Target GCN GAT GIN GraphSAGE GraphMix GPT-GNN SelfTask GPA DANN UDAGCN ACDNE TRANSNET

Photo Comp 67.24 65.81 66.37 71.26 42.13 62.75 63.18 60.22 71.74 73.13 24.55 76.54
Comp Photo 79.17 71.58 75.32 84.56 74.36 75.63 76.80 71.36 83.75 81.24 33.38 87.67

A1
A2 50.18 46.90 43.56 45.63 48.64 55.04 46.60

52.02 55.34 39.33 33.14 64.11
D1 51.60 56.35 38.66 31.71 65.34
A1

M2 59.60 51.86 47.88 53.17 55.67 64.27 54.75
62.53 65.75 45.90 43.77 73.53

D1 61.63 64.63 45.20 43.11 74.20
A1

D2 58.30 53.39 45.07 52.16 51.59 51.84 59.05
57.50 60.01 42.36 40.93 66.75

D1 56.89 61.87 42.26 40.17 67.95
A2

A1 63.36 62.23 46.82 57.70 60.17 58.53 56.73
59.05 62.22 61.23 42.64 65.99

M2 56.56 61.63 59.27 44.75 64.74
D2 58.31 61.58 60.21 43.10 64.46
A2

D1 94.74 97.33 96.81 94.75 91.15 64.64 91.67
68.78 95.01 91.72 29.17 97.95

M2 69.99 95.10 93.87 26.70 97.71
D2 71.27 95.44 93.54 33.45 97.91

Table II
ABLATION STUDY USING 5 LABELED SAMPLES PER CLASS. MEAN AND STANDARD DEVIATION ARE REPORTED OVER FIFTY RANDOM TRIALS.

Ablation A1 → M2 D1 → M2 A1 → A2 D1 → A2
Without node signals in source & target domain 60.06± 5.91 58.14± 6.05 49.20± 4.94 49.10± 5.86
Without link signals in source & target domain 73.51± 3.93 73.72± 3.79 63.78± 5.08 65.28± 4.79
Without target domain node and link signals 70.43± 3.91 70.55± 3.91 60.29± 3.76 59.95± 3.78
Without Uniff 50.07± 9.49 55.49± 13.51 47.01± 8.89 41.36± 10.01
Without Unifs 67.80± 4.05 67.50± 3.21 58.69± 4.68 57.46± 4.18
Without Uniff & Unifs 61.86± 9.20 54.51± 9.36 49.31± 10.03 49.72± 7.83
Without Trinity-signal Mixup 70.54± 4.15 70.83± 3.53 62.57± 4.27 61.22± 5.31
TRANSNET 73.53 ± 4.13 74.20 ± 3.64 64.11 ± 4.75 65.34 ± 5.26

VI. CONCLUSION

In this paper, we present TRANSNET, a generic learning

framework for augmenting knowledge transfer across different

graphs via multi-scale graph signal mixup. It consists of two

major parts: Domain Unification and Trinity-signal Mixup,

which give potential approaches to two challenges: C1. Graph
Discrepancy and C2. Signal Heterogeneity respectively. Ex-

tensive experimental results demonstrate the efficacy of our

method for knowledge transfer across graphs.
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