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ABSTRACT
Stochastic gradient descent (SGD) augmented with various mo-

mentum variants (e.g. heavy ball momentum (SHB) and Nesterov’s

accelerated gradient (NAG)) has been the default optimizer for

many learning tasks. Tuning the optimizer’s hyperparameters is

arguably the most time-consuming part of model training. Many

new momentum variants, despite their empirical advantage over

classical SHB/NAG, introduce even more hyperparameters to tune.

Automating the tedious and error-prone tuning is essential for Au-

toML. This paper focuses on how to efficiently tune a large class

of multistage momentum variants to improve generalization. We

use the general formulation of quasi-hyperbolic momentum (QHM)

and extend “constant and drop”, the widespread learning rate 𝛼

scheduler where 𝛼 is set large initially and then dropped every few

epochs, to other hyperparameters (e.g. batch size 𝑏, momentum

parameter 𝛽 , instant discount factor a). Multistage QHM is a uni-

fied framework which covers a large family of momentum variants

as its special cases (e.g. vanilla SGD/SHB/NAG). Existing works

mainly focus on scheduling 𝛼 ’s decay, while multistage QHM al-

lows additional varying hyperparameters such as 𝑏, 𝛽 , and a , and

demonstrates better generalization ability than only tuning 𝛼 . Our

tuning strategies have rigorous justifications rather than a blind

trial-and-error. We theoretically prove why our tuning strategies

could improve generalization. We also show the convergence of

multistage QHM for general nonconvex objective functions. Our

strategies simplify the tuning process and beat competitive opti-

mizers in test accuracy empirically.
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1 INTRODUCTION
Most machine learning and data mining tasks could be formulated

as the following optimization problem:

min

\
R(\ ) = min

\
E

(𝑥𝑖 ,𝑦𝑖 )∼D𝑙\ (𝑥𝑖 , 𝑦𝑖 ), (1)

where \ , D, and 𝑙\ (𝑥𝑖 , 𝑦𝑖 ) are the trainable parameter, data distri-

bution, and loss function, respectively. Generalization ability, the

most important measure of learning models, depends heavily on

whether the optimizer is able to reliably find a solution of (1) that

could generalize well to unseen test instances.

Stochastic gradient descent (SGD), the backbone of many opti-

mizers, minimizes the objective by iteratively moving the param-

eters along its gradient direction. Vanilla SGD tends to converge

slowly especially when it gets closer to local minima. Therefore,

to accelerate the convergence, pioneered by Polyak’s Heavy Ball

momentum (SHB) [39] and Nesterov’s Accelerated Gradient (NAG)

[37], a momentum term which incorporates past gradient estimates

into the current update, is often augmented to SGD.

SGD+momentum is the default optimizer for most deep learn-

ing models as it achieves an impressive training time saving and

test accuracy boost compared to competing optimizers [49, 52]. In

recent years, a large number of new momentum variants, many of

which modify the classical SHB and NAG to accommodate more

complex task-dependent objective functions, have been proposed

and achieved state-of-the-art performances across domains, e.g.,

Synthesized Nesterov Variants (SNV) [28], PID control (PID) [2],

Triple Momentum [50], Accelerated Stochastic Gradient Method

(AccSGD) [23], and Quasi-Hyperbolic Momentum (QHM) [33].

Configuration of hyperparameters has a huge impact on the

quality of solutions found by optimizers for deep neural networks

[4]. The most reliable hyperparameter tuning strategy is still a com-

prehensive grid search, and is probably the most time-consuming

part of training. An essential step of AutoML is to simplify and

automate tuning. However, the flux of newly proposed momentum

variants even cast more challenges on tuning:

(1) New momentum variants, despite their empirical advantages,

often have more complex updating rules than SGD/SHB/NAG

and introduce more hyperparameters. In SGD, learning rate 𝛼 is

often the only hyperparameter to adjust, and SHB/NAG adds an

additional momentum parameter 𝛽 , which is still manageable

for a manual search. However, it is commonplace for any new

optimizer to require at least a triplet of hyperparameters to

configure, e.g., QHM adds an instant discount factor a ; while

PID requires a set of (𝑘𝑃 , 𝑘𝐷 ) to be determined apart from the
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learning rate. Batch size is also a factor of model performance

that has to be weighed in. Considering these hyperparameters

altogether, grid search at even a moderate scale is costly.

(2) Hyperparameters are typically not fixed throughout the entire

learning process. Scheduling the decay/increase of hyperpa-

rameters appropriately is nearly as important as assigning the

initial values to them [52]. Existing scheduler usually decays

learning rate gradually while holding other hyperparameters

constant (e.g., batch size and momentum parameter). It remains

unclear whether varying hyperparameters other than learning

rate could help different momentum variants in general. If op-

timizers do benefit from varying additional hyperparameters,

it introduces tremendous complexity to search manually the

exact scheduling schemes for all different hyperparameters.

(3) There is a lack of unified analysis that could cover different mo-

mentum variants with one single framework, whichmakes it dif-

ficult to transfer existing tuning strategies from SGD/SHB/NAG.

There have been a few works that introduce different learning

rate tuners [5, 9, 24, 46] or momentum parameter schedulers

[12, 45, 49] to help practitioners tune SGD/SHB/NAG. However,

a completely new round of tuning exploration is still necessary

for any newly proposed momentum scheme as its connection

to SGD is largely in the dark.

(4) Existing tuning strategies are mainly from a trial-and-error

process, which includes attempting different configurations

and accumulating experience from the feedback of empirical

experiments. This procedure is not only tedious and error-prone,

but also lacks valuable insights why certain strategy works and

whether it works across different models or datasets.

To tackle the aforementioned challenges, this paper provides

an efficient tuning pipeline to relieve practitioners of the labor-

intensive tuning process and improve the optimizer’s generalization

ability at the same time. We select the multistage version of a pow-

erful momentum scheme, QHM (Quasi-Hyperbolic Momentum),

which is parameterized by a triplet of hyperparameters (learning

rate 𝛼 , momentum parameter 𝛽 , instant discount factor a [33]) to

analyze, as it includes many popular momentum variants as its spe-

cial cases. Therefore, the proposed method is generally applicable

to a large family of multistage momentum variants.

We extend the idea that practitioners have long used to schedule

learning rate in SGD, “constant and drop”
1
, to all hyperparam-

eters involved in QHM ((𝛼, 𝛽, a) and batch size 𝑏), and propose

multistage QHM in Section 3, where we adjust all involving hy-

perparameters stagewise. Existing works are unclear about how

to adjust (𝛼, 𝛽, a, 𝑏) appropriately or whether adjustment of any of

them could contribute to better generalization.

In Section 4, we first prove Theorem 1 to show how varying

hyperparameters affect the generalization bound, and then based

on the theoretical findings, propose the exact paradigm for our

stagewise scheduler. In Section 5, we provide the convergence guar-

antee for multistage QHM for nonconvex objectives. In Section 6,

1
“Constant and drop” essentially divides the entire training process into several stages,

where initial learning rate is set to be large for faster convergence and held constant

for a number of epochs, and is dropped with a fixed rate (or exponentially) at the end

of every stage. “Constant and drop” step size is so popular that a number of optimizers

use it by default in off-shelf softwares (e.g., PyTorch [38] or Tensorflow [1]).

extensive experiments are presented and show the empirical advan-

tage of our proposed multistage QHM. We discuss relevant works

in Section 7.

Our contribution could be summarized as follows:

(1) We propose multistage QHM, which is a unified and flexi-

ble framework that allows adjusting every hyperparameter

across stages. We provide the exact approach to schedule the

decay/increase to achieve better generalization. Our method

effectively restricts the search space of hyperparameters, and

helps automate the tuning process.

(2) We provide theoretical evidence whether and why our proposed

multistage QHM improves generalizability. Our theoretical find-

ings could easily transfer to many newly proposed momentum

schemes. To our best knowledge, this is the first hyperparameter

tuning pipeline that is applicable to a large class of optimizers

with a sound theoretical guarantee.

2 BACKGROUND
In this section, we introduce quasi-hyperbolic momentum, and

generalization error, that are pertinent to this work.

2.1 Quasi-Hyperbolic Momentum
Let {𝑧𝑖 = (𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1

represent the training set. Expected risk func-

tion is defined as R(\ ) ≜ E𝑧∼D𝑙\ (𝑧), where 𝑙\ (𝑧) is the loss function

associated with model parameter \ and data instance 𝑧. Empirical

risk RZ (\ ) is an unbiased estimator of the expected risk function,

and is defined asRZ (\ ) ≜ 1

𝑏

∑
𝑗 ∈Z R 𝑗 (\ ), whereR 𝑗 (\ ) ≜ 𝑙\ (𝑧 𝑗 ) is the

contribution to risk from 𝑗-th data point. Z represents a mini-batch

of random samples and 𝑏 ≜ |Z | represents the batch size. Similarly,

we define ∇\R, ∇\R 𝑗 , and ∇\RZ as their gradients, respectively.

We denote the empirical gradient as 𝑔(\ ) ≜ ∇\RZ and exact gra-

dient as 𝑔(\ ) ≜ ∇\R for the simplicity of notation. We assume

E[∥𝑔(\ ) − 𝑔(\ )∥2] ≤ 𝜎2
(bounded noise is a standard assumption

[11, 35]).

We start from the following updating rule of Stochastic Gradient

Descent (SGD):

\𝑘+1
= \𝑘 − 𝛼𝑘𝑑𝑘 , (2)

where 𝛼𝑘 and 𝑑𝑘 are the learning rate and search direction at 𝑘-th

step, respectively. (mini-batch) SGD
2
uses 𝑔𝑘 ≜ 𝑔(\𝑘 ) as 𝑑𝑘 .

We focus on Quasi-Hyperbolic Momentum methods (QHM) [33],

which could be formulated as:

𝑑𝑘+1
= (1 − 𝛽𝑘 )𝑔𝑘 + 𝛽𝑘𝑑𝑘 ,

\𝑘+1
= \𝑘 − 𝛼𝑘 [(1 − a𝑘 )𝑔𝑘 + a𝑘𝑑𝑘 ].

(3)

Note that the formulation of QHM method is very general, and

could recover many momentum methods with different specifica-

tions of (𝛼𝑘 , 𝛽𝑘 , a𝑘 ). For example, QHM recovers plain SGD when

a𝑘 = 0.

If a𝑘 = 1, QHM recovers SHB:

𝑑𝑘+1
= (1 − 𝛽𝑘 )𝑔𝑘 + 𝛽𝑘𝑑𝑘 ,

\𝑘+1
= \𝑘 − 𝛼𝑘𝑑𝑘 ,

(4)

2
As mini-batch GD contains ’one-instance’ SGD as a special case, we use ’SGD’ to

refer to mini-batch GD throughout this paper unless specified otherwise.
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where variable 𝑑 is commonly referred to as the ’momentum buffer’.

The exponential discount factor 𝛽𝑘 controls how slowly the mo-

mentum buffer is updated.

If a𝑘 = 𝛽𝑘 , QHM recovers NAG:

𝑑𝑘+1
= (1 − 𝛽𝑘 )𝑔𝑘 + 𝛽𝑘𝑑𝑘 ,

\𝑘+1
= \𝑘 − 𝛼𝑘 [(1 − 𝛽𝑘 )𝑔𝑘 + 𝛽𝑘𝑑𝑘 ].

(5)

From the connection between QHM and SHB (NAG), QHM could

be interpreted as a a𝑘 -weighted average of the momentum update

step and the plain SGD update step. a𝑘 is referred to as instant

discount factor.

[33] showed that QHM could recover many other popular mo-

mentum schemes, e.g., PID control (PID), Synthesized Nesterov Vari-

ants (SNV), Accelerated Stochastic Gradient Method (ASGD), and

Triple Momentum, with different 𝛼𝑘 , 𝛽𝑘 , a𝑘 specifications. There-

fore, our analysis based on QHM could cover a family of momentum

methods as special cases.

2.2 Generalization Error for Stochastic
Algorithms

Generalization to unseen data is the essence of learning, and gen-

eralization error measures the discrepancy between the learner’s

performance on training and testing environments. We now formu-

late generalization bound in PAC-Bayesian framework.

Traditional Frequentist learning paradigm views model parame-

ter \ as fixed but unknown values and do not attach any probabili-

ties to these learnable parameters. In contrast, Bayesian perspective

studies a distribution of every possible setting of parameters instead

of betting on one single setting of parameters to manage model

uncertainty, and has proven increasingly powerful in many applica-

tions. In the Bayesian framework, \ is assumed to follow some prior

distribution 𝑃 (reflects our prior knowledge of model parameters),

and at each iteration of QHM, the \ distribution shifts to {𝑄𝑘 }𝑘≥0
,

and converges to posterior distribution 𝑄 (reflects our knowledge

of model parameters after learning with D). We further resort to

Bayesian risk function to assess the generalization bound.

R(𝑄) ≜ E\∼𝑄E(𝑥,𝑦)∼D𝑙 (𝑓\ (𝑥 ), 𝑦),

ˆR(𝑄) ≜ E\∼𝑄
1

𝑁

𝑁∑
𝑗=1

𝑙 (𝑓\ (𝑥 𝑗 ), 𝑦 𝑗 ),
(6)

where
ˆR(𝑄) is the risk evaluated on training set T and 𝑁 ≜ |T | is

the sample size, while the expected risk R(𝑄) is the expectation of

the error on unseen data. The generalization bound could therefore

be defined as follows:

E ≜ |R(𝑄) − ˆR(𝑄)|. (7)

3 A STAGEWISE HYPERPARAMETER
SCHEDULER

One of the most effective hyperparameter scheduling rules is “con-

stant and drop”. “Constant and drop” is the de-facto learning rate

scheduler in most large-scale neural networks [25, 45, 49]. In its

vanilla SGD version (a.k.a. multistage SGD), with a prespecified set

of learning rates {𝛼𝑖 }𝑀𝑖 and training lengths {𝑇𝑖 }𝑀𝑖 (often measured

by number of iterations/epochs), the learning process is divided

into 𝑀 stages, and at 𝑖-th stage SGD(𝛼𝑖 ) is applied for 𝑇𝑖 itera-

tions/epochs.

The logic behind “constant and drop” is: large but constant step

size allows for faster convergence than diminishing step size in

early stage of training. However, constant step size SGD (or its

variants) will only fluctuate in a local region around the minimum

according to some stationary distribution instead of converging

directly to theminimum itself [35]. Therefore, in “constant and drop”

paradigm, a large learning rate is held constant for a reasonably

long period to take advantage of faster convergence until it reaches

a stationary distribution around minimizer (or to a stage where

it is sufficiently close to minimizer), and then the learning rate is

dropped by a constant factor (or exponentially in some cases) for

more refined training.

Algorithm 1 extends “constant and drop” to a large class of mo-

mentum variants. As momentum variants are more predominantly

used than vanilla SGD, Algorithm 1 characterizes most real-world

training. Note it recovers multistage SGD when a𝑖 = 0, multistage

SHB when a𝑖 = 1, and multistage NAG when a𝑖 = 𝛽𝑖 .

Algorithm 1: Multistage QHM

Input: Objective function R(\ ), initialization \0, number of

stages𝑀 , triplets of QHM specification

{𝛼𝑖 , 𝛽𝑖 , a𝑖 }𝑀𝑖=1
, training lengths {𝑇𝑖 }𝑀𝑖=1

, batch sizes

{𝑏𝑖 }𝑀𝑖=1
;

1 for 𝑖 ∈ {0, 1, ..., 𝑀 − 1} do
2 update \𝑖,0 ← \𝑖 ;

3 for 𝑘 ∈ {0, ...,𝑇𝑖 − 1} do
4 Sample a mini-batch Z𝑘 = {(𝑥 𝑗 , 𝑦 𝑗 )}𝑏𝑖𝑗=1

from training

data uniformly;

5 Compute gradient of objective function based on Z𝑘 ,

i.e., 𝑔𝑘 =
1

𝑏𝑖

∑
𝑗 ∈Z𝑘 ∇R 𝑗 (\𝑖,𝑘 );

6 Compute 𝑑𝑘 = (1 − 𝛽𝑖 )𝑔𝑘 + 𝛽𝑖𝑑𝑘−1
, with 𝑑0 = 0;

7 Update \𝑖,𝑘+1
← \𝑖,𝑘 − 𝛼𝑖 [(1 − a𝑖 )𝑔𝑘 + a𝑖𝑑𝑘 ];

8 end
9 update \𝑖+1 ← \𝑖,𝑇𝑖 ;

10 end
11 return \𝑀

Note existing works and most off-shelf implementations only

allow 𝛼𝑖 and 𝑇𝑖 to vary across stages, while fixing (𝛽𝑖 , a𝑖 ) and 𝑏𝑖
as constants [30, 52]. Algorithm 1 is much more flexible. Based

on our results, fixing 𝛽𝑖 and 𝑏𝑖 is suboptimal. In Section 4 we will

provide theoretical justifications. In Section 6, we show our (𝛽𝑖 , 𝑏𝑖 )

scheduler achieves non-trivial advantages over existing schedulers.

4 HOW TO TUNE MULTISTAGE QHM?
It is well known that optimization hyperparameters have a substan-

tial impact on the quality of training process and generalizability

for deep neural networks. Algorithm 1 has a large number of hy-

perparameters: stage-varying learning rate {𝛼𝑖 }𝑀𝑖=1
, momentum

parameter {𝛽𝑖 }𝑀𝑖=1
, instant discount factor {a𝑖 }𝑀𝑖=1

, and batch size

{𝑏𝑖 }𝑀𝑖=1
, to name a few.

Apparently, a grid search on such a large space of hyperpa-

rameters in Algorithm 1 is computationally infeasible even with
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substantial resources. This section will discuss how to configure

these hyperparameters for better generalization. In subsection 4.1,

we will theoretically connect the generalization error of QHM with

these hyperparameters. Subsection 4.2 explains how to tune to

decrease the generalization error in practice.

4.1 Generalization Theorem
The connection between generalization error and hyperparameters,

especially momentum related parameters, is barely studied in exist-

ing works. We represent the generalization error as a function of

hyperparameters in the following theorem.

Theorem 1. Assume the risk function is locally quadratic, and
gradient noise is Gaussian 3. Suppose the prior distribution of param-
eters is N (\0, _0𝐼𝑑 ) with some constant \0 and _0, where 𝑑 represents
the dimension of parameters. For any positive real 𝜖 ∈ (0, 1), the
following upper bound of generalization error holds with probability
at least 1 − 𝜖 ,

R(𝑄) − ˆR(𝑄) ≤
√

𝐶1 +𝐶2(𝛼, 𝛽, a, 𝑏)

2𝑁 − 1

,

where

𝐶1 =

1

2_0

∥\0∥22 +

1

2

𝑑 log _0 −
1

2

𝑑

−1

2

log det(Σ𝐴−1
) + log

1

𝜖
+ log𝑁 + 2,

𝐶2(𝛼, 𝛽, a, 𝑏) = −1

2

𝑑 log

𝛼

2𝑏

+

𝛼tr(Σ𝐴−1
)

4_0𝑏
+

𝛼2tr(Σ)

4_0𝑏

(4a2 − 2a − 1)𝛽2 − 2a𝛽 + 1

2(1 − 𝛽2
)

.

(8)

Proof. We defer the proof to Appendix due to space limit. Note

det and tr indicate the determinant and trace of a matrix, respec-

tively. □

In Theorem 1, generalization error is upper bounded by 𝐶1 plus

𝐶2, where 𝐶2 is a function of hyperparameters of interest, i.e.,

(𝛼, 𝛽, a, 𝑏), while 𝐶1 is constant determined only by sample size

and initialization. As our concentration is to study how varying

(𝛼, 𝛽, a, 𝑏) affects generalization error, we mainly focus on𝐶2 in the

rest of the paper. Further notice only the last term in 𝐶2 includes

(𝛽, a). Let us denote the last term as 𝐻 for ease of notation:

𝐻 ≜
𝛼2

tr(Σ)

4_0𝑏

(4a2 − 2a − 1)𝛽2 − 2a𝛽 + 1

2(1 − 𝛽2
)

.

4.2 Hyperparameters Scheduling Scheme
We discuss how exactly Theorem 1 guides us to tune multistage

QHM.

4.2.1 Decay learning rate, while keeping 𝑏𝑖
𝛼𝑖

non-increasing.

The following Corollary explains the role of
𝑏𝑖
𝛼𝑖

on each training

stage:

Corollary 4.1. The impact of 𝑏
𝛼 could be summarized as follows:

3
The assumption is standard when approximating a stochastic algorithm with a

continuous-time stochastic process (see [11, 14, 35]) and is justified when the iterates

are confined to a restricted region around the minimizer.

(1) If the model size 𝑑 (i.e., number of parameters) is larger 4 than
𝛼tr(Σ𝐴−1

)

2_0𝑏
+ 2𝐻 , smaller 𝑏

𝛼 produces smaller generalization
error.

(2) If 𝑏
𝛼 is fixed as constant, smaller 𝛼 produces smaller general-

ization error. 5

Proof. The first statement is shown by calculating the derivative

of𝐶2 w.r.t. 𝑠 =
𝑏
𝛼 . The second statement is obvious by setting 𝑏 = 𝑠𝛼

for some constant 𝑠 , and substitute into 𝐶2. □

Learning rate decay is a general consensus for most optimizers,

including SGD variants [40] and adaptive gradient methods (e.g.,

Adam or RMSProp) [24]. However, it is less understood whether

batch size should adjust alongside learning rate. Most off-shelf

softwares hold it constant throughout the entire training process,

for which Corollary 4.1 shows to be suboptimal.

[12, 45] propose to scale batch size with learning rate as well

(a.k.a. linear scaling rule), but in an increasing direction, for SHB

and NAG. It is mainly to take advantage of the speedup of large-

batch training, but with a slight sacrifice in testing accuracy. Our

Theorem 1 justifies why linear scaling rule is reasonable, and also

explains why linear scaling rule (in its increasing version) hurts

generalization.

Specifically, the first statement in Corollary 4.1 indicates clearly if

we fix batch size, decaying learning rate would hurt generalization.

But if we decay batch size faster than learning rate, i.e. decrease

𝑏𝑖
𝛼𝑖
, (or at least adjust batch size proportionately to learning rate, i.e.

keep
𝑏𝑖
𝛼𝑖

constant), decaying learning rate would actually improve

generalizability according to the second statement in Corollary

4.1. Undershrinkage of batch size (
𝑏𝑖
𝛼𝑖

increases with 𝑖) negatively

impacts generalization of multistage QHM in theory, and empirical

experiments in Section 6 support our finding.

Corollary 4.1 also gives us insights how we should set initial

batch size 𝑏1 and initial learning rate 𝛼1. In order to maintain a

smaller
𝑏𝑖
𝛼𝑖
, we should select larger 𝛼1 as long as the optimizer still

converges, and smaller 𝑏1 as long as running time does not exceed

time budget.

4.2.2 Increase momentum parameter, while keeping in-
stant discount factor a𝑖 constant.
In the original paper of QHM [33], authors proposed to set

(𝛽 = 0.999, a = 0.7) throughout the entire learning process and

achieved impressive improved training in a variety of settings. The

following corollary provides a better configuration which beats

(𝛽 = 0.999, a = 0.7) in generalization ability.

Corollary 4.2. 𝐻 (𝛽 → 1, a = 0.5) ≪ 𝐻 (𝛽 = 0.999, a = 0.7), and
consequently, (𝛽 → 1, a = 0.5) decreases the generalization error.

Proof. The proof is obvious by simply substituting (𝛽, a) into

𝐻 .
6 □

4
Modern large-scale deep learning models are often extremely overparameterized,

with 𝑑 ranging from tens to hundreds of millions (e.g., VGG [41] and ResNet [15]),

and this condition is easily fulfilled.

5
[14] shows a similar bound as Theorem 1, but does not consider momentum parame-

ters (𝛽, a); and notably, it only includes the first order term of learning rate𝑂(𝛼 ). The

second statement of this Corollary could not be obtained with their first-order bound,

and we will show in Section 6 that such difference is empirically non-trivial.

6
Note that when 𝛽 → 1, 𝐻 could be negative, but it does not indicate a negative

generalization error as it is only one term of the generalization error.
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Setting a 𝛽 which is close to 1 is commonplace in practice (e.g.,

PyTorch SGD+momentum sets 𝛽 = 0.9 by default). For SHB and

NAG, [45, 49] also propose a scheduler for 𝛽 to increase, to ensure

faster convergence. However, it does not apply to QHM, as the

convergence rate for QHM is much more complex, even for qua-

dratic objective functions (see Theorem 3 in [11]). The convergence

rate is not a monotone function of 𝛽 . Therefore, increasing 𝛽 does

not necessarily guarantee faster convergence for all momentum

schemes covered by QHM formulation.

However, generalization bound in Theorem 1 is a monotonically

decreasing function of 𝛽 when fixing a = 0.5. Therefore, adopting an

increasing {𝛽𝑖 }𝑀𝑖=1
is justified for better generalization performance.

4.2.3 Increase length of training time 𝑇𝑖 .
As the step size is getting smaller, it is natural to allow longer

training time in later stages than earlier stages. Therefore, we adopt

the widespread tuning strategy here, i.e., keeping𝑇𝑖𝛼𝑖 as a constant.

4.2.4 Tuning Strategies for Multistage QHM
. Combining everything together, suppose the dropping rate of step

size is 0 < 𝑟 < 1, the dropping rate of batch size is 0 < 𝑟𝑏 ≤ 𝑟 < 1

(i.e., batch size decreases faster than or proportionately to step size),

for all 1 ≤ 𝑖 ≤ 𝑀 , our tuning paradigm for Algorithm 1 is as follows:

𝛼𝑖 = 𝑟 𝑖−1𝛼1, 𝑏𝑖 = 𝑟 𝑖−1

𝑏
𝑏1, 𝑇𝑖 = (

1

𝑟
)
𝑖−1𝑇1, a𝑖 =

1

2

,

𝛽𝑖 = 1 − 1

1 + (
𝛽1

1−𝛽1

)(
1

𝑟 )
𝑖−1

, 𝛽
2𝑇𝑖
𝑖
≤ 1

2

.
(9)

In practice, a popular choice of 𝑟 is
1

2
. 𝑟𝑏 could be set as

1

2
for

convenience (Section 6.1 shows smaller 𝑟𝑏 only exhibits marginal

advantage). 𝛽1 and𝑇1 could just select the default values of software

implementation. Our 𝛽 scheduler 𝛽𝑖 = 1 − 1

1+(
𝛽

1

1−𝛽
1

)(
1

𝑟
)
𝑖−1

ensures

the increasing trend of 𝛽𝑖 . Condition 𝛽
2𝑇𝑖
𝑖
≤ 1

2
ensures 𝑇𝑖 not to

be extremely small. Note that even with 𝛽𝑖 as large as 0.999, this

condition stands if 𝑇𝑖 is more than 500 iterations, which is much

smaller than the typical number of iterations we run in practice.

Therefore, this condition is easily fulfilled. 𝑏1 should be set as small

as our running time budget allows us to boost generalization, while

𝛼1 needs to be large as long as the optimizer still converges.

With (9), we only have to manually search 𝛼1, and Corollary

4.1 further indicates, we only need to search 𝛼1 monotonically. For

example, if we have a grid 𝛼 = (0.01, 0.02, 0.03, · · · , 1.0) as usual,

we only need to start from 0.01, increase 𝛼 , and stop immediately

when the next (or next few) grid value does not give us a better

test accuracy. This further decreases our search space, as we do not

need to try out every possible value in a large grid.

5 CONVERGENCE OF MULTISTAGE QHM
In this section, we will provide the convergence guarantee of our

multistage QHM, for general nonconvex objective functions.

Theorem 2. SupposeR(\ ) is 𝐿-smooth and not necessarily strongly
convex. We optimize R(\ ) using Algorithm 1 with hyperparameters
specified as in (9). Let 𝑁𝑇 =

∑𝑀
𝑖=1

𝑇𝑖 be the total number of iterations
in𝑀-stage training. Denote the expected gradient square as {G𝑘 ≜
E[∥𝑔𝑘 ∥2]}𝑘≤𝑁 . We define the average expected gradient square at
𝑖-th stage as ¯G𝑖 ≜ 1

𝑇𝑖
Σ
𝑇1+𝑇2+· · ·+𝑇𝑖
𝑘=𝑇1+𝑇2+· · ·+𝑇𝑖−1+1

G𝑘 and the average expected

gradient square of all 𝑀 stages as ¯G ≜ 1

𝑀

∑𝑀
𝑖=1

¯G𝑖 . Denote𝑊1 ≜
𝛼𝑖𝛽𝑖a𝑖
1−𝛽𝑖 and𝑊2 ≜ 𝑇𝑖𝛼𝑖 for all 𝑖 ≤ 𝑀 . Under mild regulatory conditions

7, we would have:
¯G ≤ Yd + Ys,

Yd =

2(R(\1) − R∗)
𝑀𝑊2

,

Ys =

1

𝑀

𝑀∑
𝑖=1

(
1 + 24

𝛽2

𝑖
a2

𝑖

(1 − 𝛽𝑖 )2
𝛽1√

𝛽𝑀 + 𝛽2

𝑀

+

6 + 2𝛽2

𝑖
a2

𝑖

1 − 𝛽1

)
𝛼𝑖𝐿𝜎

2 .

(10)

Remark 5.1 (Nonconvex Ojbective). In Theorem 2, we only
require the objective function to be smooth. Many existing works
further require the objective function to be strongly convex [11]. As
in neural network optimization, strongly convexity may not hold for
highly over-parameterized neural networks (see [29]). Therefore, our
settings are more general.

Remark 5.2 (Yd and Ys). Yd and Ys reflect two driving forces of error,
Yd is the deterministic approximation error, representing the iterates
get closer to the minima. It will diminish with larger number of stages
𝑀 or larger number of iterations {𝑇𝑖 }. However, Ys is the irreducible
stochastic error, describing the fluctuation around the minima due
to gradient noise. And specifications of (𝛽𝑖 , a𝑖 ) affect the radius of
stationary distribution Ys.

Proof. Due to page limit, we defer details to Appendix and only

provide a proof sketch here. Let (𝛼𝑘 , 𝛽𝑘 , a𝑘 ) denote the hyperparam-

eters at 𝑘-th iteration. Recall the formulation of QHM (Equation

(3)). Denote the update sequence 𝑦𝑘 ≜ \𝑘+1
− \𝑘 . Vanilla SGD is

easier to handle as it updates −𝛼𝑘𝑔𝑘 every step. However, in QHM,

𝑦𝑘 ̸= −𝛼𝑘𝑔𝑘 . We construct an auxiliary sequence {[𝑘 }𝑘∈N, such
that [𝑘+1

− [𝑘 = −𝛼𝑘𝑔𝑘 [30]. {[𝑘 }𝑘∈N is devised as follows:

[𝑘 =

{
\𝑘 𝑘 = 1

\𝑘 −
𝛼𝑘𝛽𝑘 a𝑘

1−𝛽𝑘 𝑑𝑘−1
𝑘 ≥ 2

(11)

where 𝑑0 = 0. It is not difficult to verify [𝑘+1
− [𝑘 = −𝛼𝑘𝑔𝑘 :

[𝑘+1
− [𝑘 = \𝑘+1

−𝑊1𝑑𝑘 − (\𝑘 −𝑊1𝑑𝑘−1
)

= −𝛼𝑘𝑦𝑘 −
𝛼𝑘𝛽𝑘a𝑘

1 − 𝛽𝑘
(𝑑𝑘 − 𝑑𝑘−1

)

= −𝛼𝑘 ((1 − a𝑘 )𝑔𝑘 + a𝑘𝑑𝑘 ) − 𝛼𝑘𝛽𝑘a𝑘𝑔𝑘 + 𝛼𝑘𝛽𝑘a𝑘𝑑𝑘−1
= −𝛼𝑘𝑔𝑘 .

{[𝑘 }𝑘∈N is more similar to vanilla SGD iterates and thus easier to

deal with. We then study the property of {[𝑘 }𝑘∈N and its connec-

tion to {\𝑘 }𝑘∈N. Given the gradient sequence {𝑔𝑘 }𝑘∈N, set:

𝑎𝑘,𝑖 =

{
1 − 𝛽𝑘a𝑘 𝑖 = 𝑘

a𝑘 (1 − 𝛽𝑖 )
∏𝑘

𝑗=𝑖+1
𝛽 𝑗 𝑖 < 𝑘

(12)

It is not difficult to verify 𝑦𝑘 = Σ
𝑘
𝑖=1

𝑎𝑘,𝑖𝑔𝑖 with 𝑑0 = 0. Therefore,

E[𝑦𝑘 ] = Σ
𝑘
𝑖=1

𝑎𝑘,𝑖𝑔𝑖 . We then have a key lemma on the variance

of QHM updating vector 𝑦𝑘 , and the deviance between updating

vector 𝑦𝑘 and 𝑔𝑘 , before showing Theorem 2:

7
Theorem 2 does need some mild regulatory conditions that mainly constrains the

size of 𝛼 and 𝛽 . It requires𝑊1 =
1

48

√
2𝐿

, i.e., step size could not be too large; and

1−𝛽
1

𝛽
1

≤ 12

1−𝛽𝑀√
𝛽𝑀 +𝛽2

𝑀

, i.e., {𝛽𝑖 } could not be increased too fast. These regulatory

conditions could be fulfilled by typical value assignment (e.g., starting from 𝛽1 = 0.9,

and dropping step size by rate
1

2
).
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Lemma 1. We have the following two inequalities: V[𝑦𝑘 ] ≤
(
6 −

4𝛽1 − 4𝛽𝑘a𝑘 + 2𝛽2

𝑘
a2

𝑘

)
𝜎2, and E[∥𝑔𝑘 − 1

1−a𝑘
∏𝑘

𝑖=1
𝛽𝑖

Σ
𝑘
𝑖=1

𝑎𝑘,𝑖𝑔𝑖 ∥2] ≤

Σ
𝑘−1

𝑗=1

a𝑘𝛽
𝑘−𝑗
𝑘

𝐿2

1−a𝑘
∏𝑘

𝑖=1
𝛽𝑖

(
𝑘 − 𝑗 +

𝛽𝑘
1−𝛽𝑘

)
E[∥\ 𝑗+1 − \ 𝑗 ∥2].

Please see Appendix for further steps. □

6 EXPERIMENTS
In this section, we present our empirical experiments to analyze

the performance of our proposed multistage QHM. Our codes are

publicly available
8
.

We first study how our scheduler affects the training and gener-

alization of a CIFAR-10 image classification task. We fit the model

which achieves state-of-the-art performance in various classifica-

tion benchmarks, ResNet, with different optimizers and tuning

schemes. We tried 110-layer ResNet with pre-activation (PreAct-

ResNet-110) [16], and 20-layer ResNet with no pre-activation

(ResNet-20) to ensure the robustness with varying model size. All

experiments are run with NVIDIA Quadro RTX 8000 GPU.

6.1 Batch Size Scheduler
We start from hyperparameter {𝑏𝑖 }𝑀𝑖=1

(i.e. batch size), which is

held constant throughout the entire learning process in most of

the existing optimizers. We fit PreAct-ResNet-110 on CIFAR-10 and

run for 75 epochs. We report the test accuracy after 75 epochs for

each batch scheduler. Please refer to Table 1 for our experimental

settings. ’Overshrinkage’ refers to faster batch size decay than step

size decay, and ’undershrinkage’ refers to opposite scenario. We

present our results in Figure 1 and Table 2.

Table 2 is in accordance with our claim in Section 4.2. At any

given initial learning rate, when batch size decays at least as fast as

learning rate, both training loss and test accuracy are better than

other schedulers by a non-trivial margin. Though overshrinkage

mostly gets slightly better generalization result, we do see a less

stable and more bumpy learning curve in Figure 1. Therefore, we

suggest overshrinkage only has marginal advantage and we could

set 𝑟𝑏 = 𝑟 for training with more stability.

Table 1: Experimental Settings of Table 2. All settings use
the same QHM optimizer (𝛽1 = 0.9, a = 0.5, 𝑀 = 3), but with
different batch size schedulers.

Settings 𝑏1 𝑟 𝑟𝑏 M

Multistage 256 0.5 0.5 3

Medium Initial Batch 512 0.5 0.5 3

Large Initial Batch 1024 0.5 0.5 3

Batch Undershrinkage 256 0.1 0.5 3

Batch Overshrinkage 256 0.9 0.5 3

6.2 a Scheduler
We then study the effect of a in generalization ability. a does not

appear in some optimizers (e.g. SGD/NAG/SHB). [33] proposed

a a = 0.7 based on empirical experience and achieved state-of-

the-art performance in one classification benchmark with such

8
https://github.com/jsycsjh/Multistage_QHM

specification. Based on our generalization theorem in Section 4.1,

we suggest a a = 0.5 in multistage QHM paradigm. We report our

result when training ResNet-20 on CIFAR-10 for 50 epochs with

QHM in Figure 2. All hyperparameters are exactly the same except

for initial step size and a .

We could observe differenta affect generalization ability at any of

the given initial step sizes. It could be seen in Figure 2a that training

curves are quite mixed together and no obvious training advantage

could be detected from a = 0.7 to a = 0.5. However, a = 0.5 is better

than a = 0.7 in the test accuracy by a large margin. The gradual

increase in accuracy from smaller initial step size to larger initial

step size again supports our monotone searching method.

6.3 Learning Rate Scheduler
From Table 2, it is clear that a larger initial learning rate 𝛼1 could

boost test accuracy (only if 𝛼1 is not too large to diverge). In Table 3,

we show test accuracy after running for 75 epochs with different op-

timizers (learning curves flatten long before 75 epochs in all cases).

As QHM covers many optimizers as special cases, it is expected

in Table 3 that two most popular momentum variants SHB and

NAG also satisfy this trend. And interestingly, Adam [24] optimizer,

which is not characterized by QHM formulation, also exhibits better

generalizability with increasing initial step size. The reason why

the appropriate range of step size varies for different algorithms is

that each optimizer’s effective step size is scaled differently [11, 52].

The test accuracy’s positive relationship with initial step size helps

us to simplify the procedure to search for 𝛼1. For a given search

space, practitioner does not have to try out every possible value of

𝛼1. Instead, he could start from the smallest to largest 𝛼1, and stop

when the next possible 𝛼1 does not give better test result, which

shortens the tuning time.

There are several off-shelf learning rate auto-tuners, two most

popular ones are cosine annealing scheduler [32] and one cycle

scheduler [42, 43]. We adopt the default implementation of these

two tuners
9
and sweep a large range of 𝛼1 for these two autotuners.

We pick the best performance cosine annealing and one cycle could

get and compare them to our multistage QHM in Figure 3. With

careful hand-tuning, cosine annealing scheduler could match the

performance of multistage QHM. However, multistage QHM has

at least two advantages over cosine annealing. First, in Figure 3a,

the training curve for multistage QHM is steeper than cosine an-

nealing, indicating it trains faster. Second, cosine annealing has a

complex learning rate adjustment rule and therefore, practitioners

are more difficult to understand its intrinsic process. A byproduct of

its black-box nature is it lacks a theoretical convergence guarantee

or justification why it improves test accuracy.

Adam and RMSProp are two most widespread adaptive gradi-

ent methods. We adopt the default implementation of these two

optimizers
10

and sweep a large range of 𝛼1 for these two optimiz-

ers as initial learning rate is the most influential factor for these

two optimizers [52]. We pick the best performance RMSProp and

Adam could get and compare them to our multistage QHM in Fig-

ure 4. All three optimizers achieve practically 0 training loss in

9
Please check https://pytorch.org/docs/stable/optim.html for their implementations.

10
Please check https://pytorch.org/docs/stable/_modules/torch/optim/adam.html#

Adam and https://pytorch.org/docs/stable/_modules/torch/optim/rmsprop.html#

RMSprop for their default specifications.
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Table 2: The effect of batch size scheduler on deepmodels (PreAct-ResNet-110 on CIFAR-10). The pattern is consistent with our
theoretical findings in Section 4: (i) batch size should decrease at least as fast as learning rate; (ii) initial batch size 𝑏1 should
be small; (iii) 𝛼1 should be searched monotonically.

𝛼1 Multistage

Medium

Initial Batch

Large

Initial Batch

Batch

Undershrinkage

Batch

Overshrinkage

0.05 73.9% 66.0% 54.4% 52.6% 82.1%

0.10 81.7% 74.6% 64.3% 62.9% 84.6%

0.15 83.2% 78.1% 70.2% 70.2% 85.3%

0.20 84.2% 81.2% 72.5% 75.0% 84.9%

0.25 85.6% 81.4% 77.6% 77.0% 87.3%

0.30 85.3% 83.1% 78.9% 76.7% 83.3%

(a) Training loss (𝛼1 = 0.10) (b) Test accuracy (𝛼1 = 0.10) (c) Training loss (𝛼1 = 0.30) (d) Test accuracy (𝛼1 = 0.30)

Figure 1: Training curve and test accuracy of various batch size schedulers. Baseline is multistage QHM.

(a) Train loss (b) Test accuracy

Figure 2: Training curve and test accuracy of different a set-
tings.

Table 3: The effect of initial learning rate 𝛼1 on deep mod-
els (PreAct-ResNet-110 on CIFAR-10). The pattern indicates
momentum schemes could search 𝛼1 monotonically.

𝛼1 NAG 𝛼1 SHB 𝛼1 Adam

0.005 84.1% 0.10 81.3% 0.001 86.6%

0.010 86.7% 0.20 84.9% 0.002 87.3%

0.015 87.8% 0.40 87.2% 0.004 87.8%

0.020 87.8% 0.80 87.9% 0.008 88.8%

0.025 88.6% 1.60 88.7% 0.016 89.5%

Figure 4a. Multistage QHM is better than RMSProp in Figure 4b.

Hand-tuned Adam matches Multistage QHM, with a slightly worse

end-of-training test accuracy. This is in accordance with [22, 52],

(a) Train loss (b) Test accuracy

Figure 3: Training curve and test accuracy of different learn-
ing rate schedulers (PreAct-ResNet-110 on CIFAR-10).

(a) Train loss (b) Test accuracy

Figure 4: Training curve and test accuracy of different opti-
mizers (PreAct-ResNet-110 on CIFAR-10).
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also observing momentum could achieve a very small advantage

than adaptive algorithms. Therefore, our multistage QHM has a nat-

ural tuning process that is straightforward to reason about, achieves

as good performance as complex counterparts in benchmark task.

7 RELATED WORK
7.1 Tuning approaches
The hyperparameter search space in state-of-the-art deep learning

systems can be too high-dimensional for practitioners to explore

manually, especially when deep learning has been increasingly im-

portant for many interesting real-world problems, e.g., document

processing, time series analysis, human activity recognition and

biomedical data mining [20, 34, 47, 48, 53–55]. Costly hyperparam-

eter tuning is the main obstacle of automated machine learning.

Many approaches have been developed to help tune learning rate

including random search, bayesian optimization, geometric decay,

cosine annealing with warm restarts, cyclic learning rate policy to

name a few [5, 10, 18, 32, 42, 43, 46]. However, they only consider

momentum-free scenario, or hold momentum parameter constant.

Due to the empirical advantage of SGDmomentum, a lot of effort

has also been devoted to adaptive momentum scheduler [30, 49, 57].

Most of the existing works are focused on either SHB or NAG and a

general consensus with these two optimizers is that the momentum

parameter needs to be increased. Recent papers have also noted the

impact of scheduling batch size [17, 44, 45], which mainly suggest

linearly scale batch size with learning rate, but in an increasing

direction. We theoretically explain why it may slightly sacrifice test

accuracy.

Multistage QHM is a more general and flexible framework than

existing works that includes not only SHB and NAG. Every hy-

perparameter is allowed to vary and is theoretically justified to

improve generalization.

7.2 Generalization analysis
Our work aims to theoretically and empirically justify multistage

QHM to generalize. A number of recent works empirically report

the influence of hyperparameters, largely on batch size and learning

rate, and provide practical tuning guidelines, e.g., [19, 21] connected

the training dynamics, and the generalization to the ratio of batch

size over step size.

Our generalization analysis relies on PAC-Bayesian inequali-

ties [36], and we refer readers to a comprehensive review of PAC-

Bayesian learning and references therein [13]. [14, 31] proved a

PAC-Bayesian bound for vanilla SGD. Notably, [14] showed that

the ratio of batch size and step size could not be too large to ensure

good generalization. Our work focuses on characterizing general-

ization on a class of momentum schemes, and covers their vanilla

SGD analysis as a special case. Moreover, we show that our second

order bound is better than their first order bound as it implicates

Corollary 4.1 that could not be derived only from first order bound.

7.3 Convergence analysis
The convergence of the vanilla SGD has been heavily studied and

key results are highlighted in [6]. Despite the widespread use of the

stochastic momentum method, there are limited definitive theoreti-

cal convergence guarantees. [8, 27, 58] studied momentum schemes

but only for deterministic gradients. [56] studied the SHB and NAG

methods and derived a convergence rate with bounded gradient

assumption (which we do not require), and they obtained rates that

are slower than those for SGD. Recent work establishes conver-

gence guarantees in different settings [3, 7, 26, 30, 51], largely only

for the SHB or NAG, which are not directly generalizable to other

momentum schemes.

8 CONCLUSIONS
To our best knowledge, this is the first general tuning guideline

applicable for almost all popular momentum variants with a theo-

retical guarantee to boost generalization. Our multistage paradigm

is natural to reason about and straightforward to implement. It ef-

fectively reduces the search space of hyperparameters, and shortens

the tuning time without sacrificing any learning performances. Our

theoretical findings on the impact of initial step size and shrinking

batch size are transferable to new momentum variants and are of

independent interest for practitioners to tune their own optimizers.
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9 APPENDIX
In this section, we give the proof of Theorem 1, and 2. We keep the

key proof steps and omit many algebraic transformations due to

the page limit.

9.1 Proof of Theorem 1
In this section, we introduce two lemmas and prove Theorem 1.

Lemma 2 ([36]). Let KL(𝑄 | |𝑃 ) as the KL divergence between two
distributions𝑄 and 𝑃 . For any positive real 𝛿 ∈ (0, 1), with probability
at least 1−𝛿 over a sample of size 𝑁 , we have the following inequality
for all distributions 𝑄 :

R(𝑄) ≤ ˆR(𝑄) +

√
KL(𝑄 | |𝑃 ) + log

1

𝛿
+ log𝑁 + 2

2𝑁 − 1

Lemma 3. \ optimized by QHM will converge to a stationary dis-
tribution exp{− 1

2
\𝑇 Σ\\ }. Furthermore, the trace and determinant of

Σ\ fulfill the following equalities:

tr(Σ\ ) =

𝛼

2𝑏
tr(Σ𝐴−1

)

+

𝛼2

2𝑏

( a𝛽

1 − 𝛽 (1 − 2(1 + 𝛽 − a𝛽)

1 + 𝛽
+

1

2

)

)
tr(Σ) +𝑂(𝛼3

)

det(Σ\ ) = (

𝛼

2𝑏
)
𝑑

det(Σ𝐴−1
) +𝑂(𝛼2

)

(13)

proof of Lemma 3. We start from the Taylor expansion of Σ\ =

Σ
(0)

\
+ 𝛼Σ

(1)

\
+

𝛼2

2
Σ

(2)

\
+𝑂(𝛼3

). We know from [11]:

Σ
(0)

\
= 0 𝐴Σ

(1)

\
+ Σ

(1)

\
𝐴 =

1

𝑏
Σ

Σ
(1)

\𝑑
+ Σ

(1)

𝑑\
= 𝐴Σ

(1)

\
+ Σ

(1)

\
𝐴 − 2(1 + 𝛽 − a𝛽)

1 + 𝛽

1

𝑏
Σ

𝐴Σ
(2)

\
+ Σ

(2)

\
𝐴 =

2a𝛽

1 − 𝛽 (Σ
(1)

𝑑\
𝐴 + 𝐴Σ

(1)

\𝑑
) + 2𝐴Σ

(1)

\
𝐴

(14)

where Σ\𝑑 is the covariance matrix between 𝑑 and \ . Recall Taylor

expansion: tr(Σ\ ) = 𝛼tr(Σ
(1)

\
) +

𝛼2

2
tr(Σ

(2)

\
) + 𝑂(𝛼3

). Therefore, we

derive formula for tr(Σ
(1)

\
) and tr(Σ

(2)

\
). We could get:

Σ
(1)

\𝑑
𝐴−1

+ Σ
(1)

𝑑\
𝐴−1
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(1)

\
𝐴−1

+ Σ
(1)

\
− 2(1 + 𝛽 − a𝛽)

1 + 𝛽

1

𝑏
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(2)

\
𝐴−1

+ Σ
(2)

\

=

2a𝛽
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(1)

𝑑\
+ 𝐴Σ

(1)

\𝑑
𝐴−1

) + 2𝐴Σ
(1)

\

(15)

Taking trace on both sides and recall the trace is invariant under

cyclic permutations: tr(Σ
(1)

\𝑑
𝐴−1

) +
1+𝛽−a𝛽

1+𝛽
1

𝑏
tr(Σ𝐴−1

) = tr(Σ
(1)

\
) and

tr(Σ
(2)

\
) =

2a𝛽

1−𝛽 tr(Σ
(1)

\𝑑
) + tr(𝐴Σ

(1)

\
).

We know from (14): 2tr(𝐴Σ
(1)

\
) =

1

𝑏
tr(Σ) and 2tr(Σ

(1)

\𝑑
) = tr(𝐴Σ

(1)

\
+

Σ
(1)

\
𝐴) − 2(1+𝛽−a𝛽)

1+𝛽
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𝑏
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Therefore, we have tr(Σ
(2)

\
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From 𝐴Σ
(1)

\
𝐴−1

+ Σ
(1)

\
=

1

𝑏
Σ𝐴−1

we could get tr(Σ
(1)

\
) =

1

2𝑏
tr(Σ𝐴−1

).

Together we finish the proof regarding trace. Next we prove the

determinant part. From𝐴Σ
(1)

\
+Σ

(1)

\
𝐴 =

1

𝑏
Σwe could get𝐴Σ\ +Σ\𝐴 =

𝛼
𝑏

Σ +𝑂(𝛼2
).

AssumingΣ\ is symmetric,Σ\𝐴 =
𝛼
2𝑏

Σ+𝑂(𝛼2
). It is not difficult to

show: det(Σ\ ) = (
𝛼
2𝑏

)
𝑑

det(Σ𝐴−1
)+𝑂(𝛼2

) given Σ\ =
𝛼
2𝑏

Σ𝐴−1
+𝑂(𝛼2

),

with 𝑑 is the dimension. Due to page limit, we omit the detail. □

As we are mainly concerned about how 𝛼, 𝛽, a affect the trend of

generalization bound, we ignore higher order terms for now. The

experiments have shown that our approximations are satisfactory.

proof of Theorem 1. With Lemma 2 and Lemma 3, we are

ready to prove Theorem 1. Recall the density of prior and posterior

distributions:

𝑓𝑃 =

1√
2𝜋 det(_0𝐼𝑑 )

exp

{
− 1

2

(\ − \0)
𝑇

(_0𝐼𝑑 )
−1

(\ − \0)

}
𝑓𝑄 =

1√
2𝜋 det(Σ\ )

exp

{
− 1

2

\𝑇 Σ
−1

\
\

} (16)

We calculate their KL(𝑄 | |𝑃 ) as follows: KL(𝑄 | |𝑃 ) =

∫ (
1

2
log
|_0𝐼𝑑 |
|Σ\ | −

1

2
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\
\ +
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2
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𝑑
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1

2
log|Σ\ |.
Application of the determinant and trace from Lemma 3 here

will complete our proof. □

9.2 Proof of Theorem 2
Proof. We now study R([𝑘+1

) − R([𝑘 ):

Eb𝑘 [R([𝑘+1
)] ≤

= R([𝑘 ) + Eb𝑘 [< ∇R([𝑘 ),−𝛼𝑘𝑔𝑘 >] +

𝐿𝛼2

𝑘

2

Eb𝑘 [∥𝑔𝑘 ∥2]

(17)

Taking full expectation E = Eb1
Eb2

...Eb𝑘 on both sides:

E[R([𝑘+1
)] ≤

E[R([𝑘 )] + E[< ∇R([𝑘 ),−𝛼𝑘𝑔𝑘 >] +

𝐿𝛼2

𝑘

2

E[∥𝑔𝑘 ∥2]

≤ E[R([𝑘 )] +

𝐿𝛼2

𝑘

2

E[∥𝑔𝑘 ∥2] − 𝛼𝑘E[∥𝑔𝑘 ∥2]+

𝛼𝑘
𝑐𝑘

2

𝐿2E[∥[𝑘 − \𝑘 ∥2] + 𝛼𝑘
1

2𝑐𝑘
E[∥𝑔𝑘 ∥2]

for 𝑐𝑘 > 0 as any positive constant. And we know [𝑘 − \𝑘 =

−𝛼𝑘𝛽𝑘 a𝑘
1−𝛽𝑘 𝑑𝑘−1

:

E[R([𝑘+1
)] ≤

E[R([𝑘 )] + 𝛼3

𝑘

𝑐𝑘

2

𝐿2
(

𝛽𝑘a𝑘

1 − 𝛽𝑘
)
2E[∥𝑑𝑘−1

∥2]

+(𝛼𝑘
1

2𝑐𝑘
− 𝛼𝑘 )E[∥𝑔𝑘 ∥2] +

𝐿𝛼2

𝑘

2

E[∥𝑔𝑘 ∥2]

(18)

Let us make a small detour and first prove Lemma 1.

Proof of Lemma 1. We know V[𝑦𝑘 ] = E[∥𝑦𝑘 − Σ
𝑘
𝑖=1

𝑎𝑘,𝑖𝑔𝑖 ∥2] =

E[∥Σ𝑘−1

𝑖=1
𝑎𝑘,𝑖 (𝑔𝑖 − 𝑔𝑖 ) + (1 − a𝑘𝛽𝑘 )(𝑔𝑘 − 𝑔𝑘 )∥2]

(𝑖)
≤

(
6 − 4𝛽1 − 4𝛽𝑘a𝑘 +
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2𝛽2

𝑘
a2

𝑘

)
𝜎2

, where (𝑖) follows from that {𝑔𝑘 }𝑘∈N are independent

from each other and Eb𝑘 [∥𝑔𝑘 − 𝑔𝑘 ∥2] ≤ 𝜎2
, and also Lemma 4 in

[30]. We know Σ
𝑘
𝑖=1

𝑎𝑘,𝑖 = 1 − a𝑘
∏𝑘

𝑖=1
𝛽𝑖 , thus we have:

E[∥𝑔𝑘 −
1

1 − a𝑘
∏𝑘

𝑖=1
𝛽𝑖

Σ
𝑘
𝑖=1

𝑎𝑘,𝑖𝑔𝑖 ∥2] =

1

(1 − a𝑘
∏𝑘

𝑖=1
𝛽𝑖 )

2

E[∥Σ𝑘𝑖=1
𝑎𝑘,𝑖 (𝑔𝑘 − 𝑔𝑖 )∥2]

(𝑖)
≤ 1

(1 − a𝑘
∏𝑘

𝑖=1
𝛽𝑖 )2
×

Σ
𝑘
𝑖,𝑗=1

𝑎𝑘,𝑖𝑎𝑘,𝑗

(
1

2

E[∥𝑔𝑘 − 𝑔 𝑗 ∥2] +

1

2

E[∥𝑔𝑘 − 𝑔𝑖 ∥2]

)
=

1

1 − a𝑘
∏𝑘

𝑖=1
𝛽𝑖

Σ
𝑘
𝑖=1

𝑎𝑘,𝑖E[∥𝑔𝑘 − 𝑔𝑖 ∥2]

(𝑖𝑖)
≤ 1

1 − a𝑘
∏𝑘

𝑖=1
𝛽𝑖

Σ
𝑘
𝑖=1

𝑎𝑘,𝑖

(
(𝑘 − 𝑖)Σ𝑘−1

𝑗=𝑖 E[∥𝑔 𝑗+1 − 𝑔 𝑗 ∥2]

)
(𝑖𝑖𝑖)
≤ 1

1 − a𝑘
∏𝑘

𝑖=1
𝛽𝑖

Σ
𝑘
𝑖=1

𝑎𝑘,𝑖

(
(𝑘 − 𝑖)𝐿2

Σ
𝑘−1

𝑗=𝑖 E[∥\ 𝑗+1 − \ 𝑗 ∥2]

)
=

1

1 − a𝑘
∏𝑘

𝑖=1
𝛽𝑖

Σ
𝑘−1

𝑗=1

(
Σ
𝑗

𝑖=1
𝑎𝑘,𝑖 (𝑘 − 𝑖)

)
E[∥\ 𝑗+1 − \ 𝑗 ∥2]𝐿2

(𝑖𝑣)

≤ Σ
𝑘−1

𝑗=1

a𝑘𝛽
𝑘−𝑗
𝑘

𝐿2

1 − a𝑘
∏𝑘

𝑖=1
𝛽𝑖

(
𝑘 − 𝑗 +

𝛽𝑘

1 − 𝛽𝑘

)
E[∥\ 𝑗+1 − \ 𝑗 ∥2]

(19)

where (𝑖) follows from Cauchy-Schwarz inequality, (𝑖𝑖) follows from

triangle inequality, (𝑖𝑖𝑖) follows from smoothness, (𝑖𝑣) follows from

Proposition 5 in [30]. □

Back to Inequality (18):

E[R([𝑘+1
)] ≤ E[R([𝑘 )] + 𝛼3

𝑘

𝑐𝑘

2

𝐿2
(

𝛽𝑘a𝑘

1 − 𝛽𝑘
)
2E[∥𝑑𝑘−1

∥2]

+(𝛼𝑘
1

2𝑐𝑘
− 𝛼𝑘 )E[∥𝑔𝑘 ∥2] +

𝐿𝛼2

𝑘

2

E[∥𝑔𝑘 ∥2]

We study the following sequence: 𝐿𝑘 ≜ R([𝑘 ) − R∗ +

Σ
𝑘−1

𝑖=1
𝑞𝑖 ∥\𝑘+1−𝑖 − \𝑘−𝑖 ∥2 following the idea from [30], where 𝑞𝑖 are

constants to be determined, omitting many algebraic transforma-

tions: we have E[𝐿𝑘+1
− 𝐿𝑘 ] ≤

(
2𝛼𝑘𝑐𝑘𝐿

2𝑊 2

1
− 𝛼𝑘 +

𝛼𝑘

2𝑐𝑘
+

1

2

𝐿𝛼2

𝑘
+ 4𝑞1𝛼

2

𝑘

)
E[∥𝑔𝑘 ∥2]

+

1

2

𝐿𝛼2

𝑘
𝜎2

+ 𝛼𝑘𝑐𝑘𝐿
2𝑊 2

1
E[∥𝑑𝑘−1

− Σ
𝑘−1

𝑖=1
𝑎𝑘−1,𝑖𝑔𝑖 ∥2]+

2𝑞1𝛼
2

𝑘
E[∥𝑦𝑘 − Σ

𝑘
𝑖=1

𝑎𝑘,𝑖𝑔𝑖 ∥2]

+4𝑞1𝛼
2

𝑘
(1 − a𝑘

𝑘∏
𝑖=1

𝛽𝑖 )
2E[∥𝑔𝑘 −

1

1 − a𝑘
∏𝑘

𝑖=1
𝛽𝑖

Σ
𝑘
𝑖=1

𝑎𝑘,𝑖𝑔𝑖 ∥2]

+2𝛼𝑘𝑐𝑘𝐿
2𝑊 2

1

1

𝛽2

𝑘

(1 −
𝑘∏
𝑖=1

𝛽𝑖 )
2E[∥𝑔𝑘 −

1

1 −∏𝑘
𝑖=1

𝛽𝑖
Σ
𝑘
𝑖=1

𝑏𝑘,𝑖𝑔𝑖 ∥2]

+Σ
𝑘−1

𝑖=1
(𝑞𝑖+1 − 𝑞𝑖 )∥\𝑘+1−𝑖 − \𝑘−𝑖 ∥2

(20)

where 𝑏𝑘,𝑖 = (1 − 𝛽𝑖 )
∏𝑘

𝑗=𝑖+1
𝛽 𝑗 . Set:

𝑞1 =

𝐿3
𝛼2

1
a2

1
(𝛽𝑛+𝛽2

𝑛 )

(1−𝛽1)(1−𝛽𝑛 )
2

(1−𝛽𝑛 )
2

(𝛽𝑛+𝛽2

𝑛 )𝐿2
− 4𝛼2

1
a𝑘

where 𝑛 denotes the number of iterations, it is not difficult to verify

the sum of last three terms is negative. Therefore, combining Lemma

5 in [30], we could have:

E[𝐿𝑘+1
− 𝐿𝑘 ] ≤

(
2𝛼𝑘𝑐𝑘𝐿

2𝑊 2

1
− 𝛼𝑘 +

𝛼𝑘

2𝑐𝑘
+

1

2

𝐿𝛼2

𝑘
+ 4𝑞1𝛼

2

𝑘

)
E[∥𝑔𝑘 ∥2]

+

(
1

2

𝐿𝛼2

𝑘
+ 24𝛼𝑘𝑐𝑘𝐿

2𝑊 2

1

𝛽1(1 − 𝛽𝑘 )√
𝛽𝑛 + 𝛽2

𝑛

+ 2𝑞1𝛼
2

𝑘
(6 − 4𝛽1 − 4𝛽𝑘a𝑘 + 2𝛽2

𝑘
a2

𝑘
)

)
𝜎2

(21)

Note that if𝑊1 =
1

48

√
2𝐿
, and

1−𝛽1

𝛽1

≤ 12
1−𝛽𝑛√
𝛽𝑛+𝛽2

𝑛

as in Remark ??,

we could get: 𝑞1 ≤ 𝐿
4(1−𝛽1)

.

We now have: E[𝐿𝑘+1
− 𝐿𝑘 ] ≤ −𝑄

1,𝑘E[∥𝑔𝑘 ∥2] + 𝑄
2,𝑘 , where

𝑄
1,𝑘 ≜ −2𝛼𝑘𝑐𝑘𝐿

2𝑊 2

1
+𝛼𝑘 − 𝛼𝑘

2𝑐𝑘
− 1

2
𝐿𝛼2

𝑘
−4𝑞1𝛼

2

𝑘
, and𝑄

2,𝑘 ≜
1

2
𝐿𝛼2

𝑘
+

24𝛼𝑘𝑐𝑘𝐿
2𝑊 2

1

𝛽1(1−𝛽𝑘 )√
𝛽𝑛+𝛽2

𝑛

+ 2𝑞1𝛼
2

𝑘
(6 − 4𝛽1 − 4𝛽𝑘a𝑘 + 2𝛽2

𝑘
a2

𝑘
)𝜎2

.

Set 𝑐𝑖 =
1−𝛽𝑖
2𝐿𝛼𝑖

, and recall 𝛼𝑖 =
𝑊1(1−𝛽𝑖 )

𝛽𝑖a𝑖
=

1−𝛽𝑖
24

√
2𝐿𝛽𝑖

, we could

verify 𝑄
1,𝑘 ≥ 𝛼𝑘

2
.

We could bound 𝑄
2,𝑘 :

𝑄
2,𝑘 ≤

1

2

𝛼2

𝑘
𝐿 + 12𝛼2

𝑘
𝐿

𝛽2

𝑘
a2

𝑘

(1 − 𝛽𝑘 )
2

𝛽1√
𝛽𝑛 + 𝛽2

𝑛

+

3 + 𝛽2

𝑘
a2

𝑘

1 − 𝛽1

𝛼2

𝑘
𝐿𝜎2

(22)

As 𝐿1 ≥ E[𝐿1 − 𝐿𝑘+1
] ≥ Σ

𝑘
𝑖=1

𝑄1,𝑖E[∥𝑔𝑖 ∥2] − Σ
𝑘
𝑖=1

𝑄2,𝑖 , as 𝑘 =

𝑇1 +𝑇2 + ... +𝑇𝑀 :

𝑀∑
𝑙=1

𝛼𝑙

2

𝑇1+𝑇2+...+𝑇𝑙∑
𝑖=𝑇1+𝑇2+...+𝑇𝑙−1+1

E[∥𝑔𝑖 ∥2] ≤ 𝐿1

+

𝑀∑
𝑙=1

𝑇𝑙

(
1

2

𝛼2

𝑘
𝐿 + 12𝛼2

𝑘
𝐿

𝛽2

𝑘
a2

𝑘

(1 − 𝛽𝑘 )
2

𝛽1√
𝛽𝑛 + 𝛽2

𝑛

+

3 + 𝛽2

𝑘
a2

𝑘

1 − 𝛽1

𝛼2

𝑘
𝐿

)
𝜎2

(23)

Dividing both sides by
1

2
𝑀𝑊2 =

1

2
𝑀𝛼𝑙𝑇𝑙

1

𝑀

𝑀∑
𝑙=1

1

𝑇𝑙

𝑇1+𝑇2+...+𝑇𝑙∑
𝑖=𝑇1+𝑇2+...+𝑇𝑙−1+1

E[∥𝑔𝑖 ∥2] ≤

2(R(\1) − R∗)
𝑀𝑊2

+

1

𝑀

𝑀∑
𝑙=1

(
𝛼𝑘𝐿 + 24𝛼𝑘𝐿

𝛽2

𝑘
a2

𝑘

(1 − 𝛽𝑘 )
2

𝛽1√
𝛽𝑛 + 𝛽2

𝑛

+

6 + 2𝛽2

𝑘
a2

𝑘

1 − 𝛽1

𝛼𝑘𝐿

)
𝜎2

As the last stage is 𝑀 , substitute 𝛽𝑛 = 𝛽𝑀 will complete our proof.

□
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