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Abstract—Missing data, which commonly appears in multivari-
ate time series, has been widely recognized as a key challenge in
time series analysis. Many commonly used imputation methods
either ignore the temporal dependencies of time series data, or do
not adequately utilize the relationships among variables. State-of-
the-art methods on time series imputation are built on Recurrent
Neural Networks (RNNs), which utilize the historical information
to estimate current values sequentially. However, RNNs rely
heavily on the output of nearby timestamps, which may lead
to important information lost for long sequences. Moreover,
individual variables typically present different dynamics and
missingness patterns, which is neglected by the global RNN
hidden states. In this paper, we propose an imputation framework
to learn both global and local dependencies of multivariate time
series, as well as a multi-dimensional self-attention to learn cap-
ture distant correlations across both time and feature. Extensive
experiments show that the proposed framework outperforms the
state-of-the-art methods in the imputation task, and benefits the
downstream task.

Index Terms—Time Series, Missing Data, Recurrent Imputa-
tion, Self-Attention.

I. INTRODUCTION

With the advances in data collection technologies, large
amounts of electronic data, especially the multivariate time
series, have emerged. Multivariate time series are ubiquitous
in many real world applications, including healthcare pre-
diction [1], weather forecasting [2], financial marketing [3],
etc. Nevertheless, the data inevitably carries missing values
due to various reasons such as sensor damage, data corrup-
tion, merging irregular sampled data, and human mistakes
in recording. The missingness is a common issue and poses
a fundamental challenge to researchers and engineers for
analyzing multivariate time series.

Since many machine learning algorithms often require com-
plete datasets, the missingness hinders the advanced analysis
of time series. Therefore, a fundamental task in time series
data mining is to fill in the missing data with reasonable
values. Many methods have been developed on the time series
imputation problem. Traditional imputation methods such as
K-nearest neighbor (KNN) [4], Matrix Factorization [5] and
Multivariate Imputation by Chained Equations (MICE) [6]
ignore the temporal relationships among time points. Statistical
time series models such as dynamic linear models (DLM) [7]
suffer from the incapability of modeling large-scale complex
time series. Recently, Recurrent Neural Network (RNN) based

methods [1], [8]–[12] have been developed to capture the
longitudinal temporal correlations and cross-sectional feature
correlations for time series imputation. Meanwhile, RNNs
have been incorporated into Generative Adversarial Network
(GAN) to generate complete time series [13], [14]. Current
RNN-based imputation methods sequentially estimate missing
values as the prediction of the recurrent system over time, and
have achieved state-of-the-art performances. However, there
are still some practical issues of these methods.

Firstly, it is difficult for a global RNN to capture the
peculiarity of individual series, when various series are het-
erogeneous. Typically, values at each timestamp in the mul-
tivariate time series are fed into an RNN cell as the input
vector, and a hidden state is obtained to represent the mixed
multi-variables. However, the per-series information, such as
variation in scales, dynamic patterns and the irregularity in
missingness patterns, is implicitly neglected by the global
model, which may restrict the imputation performance.

Secondly, RNN may not fully capture the correlations of
distance variables. The distant correlations can exist in both
temporal and cross-feature dimensions, and can provide impor-
tant information to estimate the current values. For example,
temperature is usually higher in summer and lower in winter,
and the repetition of this similar patterns can help to predict
the temperature values in later temporal cycles; as affected by
the temperature, the heating cost is expected to recur every
year around the same time. Self-attention provides a flexible
way to select and represent information of time series, and is
complementary to RNN based models. However, using self-
attention alone may not be sufficient, as it is difficult to obtain
accurate attention weights on data with heavy missingness.

In this paper, we propose a Global and Local Imputation
with Multi-directional Attention model (GLIMA) that focuses
on learning both global dependencies and local properties
of multivariate time series. In the proposed framework, an
efficient way of calculating sequential patterns of individ-
ual variables is developed, namely, local imputation. In this
way, the short-term correlations between RNN steps can be
fully captured. The weighted sum of the short-term states
along with current hidden states are concatenated to perform
the historical imputation. Meanwhile, we develop a multi-
directional self-attention method on top of the RNNs to capture
long-term dependencies. The multi-directional self-attention
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method directly measures the correlations between data entries
across both time and feature dimensions. We then concatenate
the representations from the two self-attentions, and map it
to the original space to obtain the self-attentive imputation.
The RNNs and multi-directional self-attention modules are
optimized jointly. Our main contributions can be summarized
as follows,
• We propose a novel framework that enhances both short-

term correlations and long-term correlations for imputing
multivariate time series with missing values. The frame-
work captures global and local information from times
series, as well as distant dependencies.

• Besides capturing short-term enhanced global informa-
tion, we explore the structure of RNN to enable local
per-series dynamics to be efficiently captured by variable-
wise hidden states, which facilitates the imputation task.

• A multi-directional attention mechanism is employed to
directly capture the dependencies between data entries
across both time and feature dimensions, which enables
that the long-term dependencies can be better captured.

• Comparing with various state-of-the-art imputation ap-
proaches, our method learns accurate estimated values
under different missing scenarios, and benefits the down-
stream classification task.

II. RELATED WORK

The past decades have witnessed a large body of imputation
approaches to deal with the missing data issue with time
series. These methods can be roughly divided into statistical
imputation, conventional machine learning based imputation
and deep learning based imputation.

The replacement method fills the missing values with some
statistical attributes, such as mean, most common value or
last observed valid value. Although straightforward to im-
plement, the simple replacement fails to capture the rela-
tionship between imputed variables and observed variables.
Classical statistical time series models such as autoregressive
(AR) models and dynamic linear models (DLM) [7] model
the temporal dependencies, but they are essentially linear
and may not be suitable for modern complex large-scale
data. Machine learning based imputation methods such as K-
nearest neighbors (KNN) [4], Matrix Factorization [5] and
Multivariate Imputation by Chained Equations (MICE) [6] do
not explicitly incorporate temporal dependencies. Recent work
extends the conventional imputation methods by modeling
temporal dependencies. [15] developed a 3D-MICE model to
combine MICE with Gaussian process, and [16] regularized
matrix factorization using autoregressive models.

Deep learning models, especially RNNs, which are capable
of handing temporal dependencies of sequential observations,
have been exploited in time series imputation recently. Based
on Gated Recurrent Unit (GRU) [17], [1] developed GRU-
D, which represents a missing value as the combination of
the last observed value and the global mean. [18] proposed
temporal belief memory (TBM), which computes a belief of
the last observation over time for each variable and imputes a

missing value based on that individual belief in both forward
and backward directions. [8] and [9] estimated the missing
values in a bidirectional recurrent dynamical system and across
variables. Another trend is to combine GAN [19] and RNN to
reconstruct realistic time series from a low-dimensional vector.
The GAN-based work includes a two-stage model [13] and an
end-to-end one [14].

Self-attention [20] has attracted enormous interest and
achieved great success in modeling texts, due to its highly
parallelizable computation and flexibility in modeling depen-
dencies. In very recent work, self-attention mechanism is
employed in modeling time series [21]–[23]. However, relying
purely on self-attention may not be sufficient on data with
missing values, as the attention weights may not be learned
accurately, especially under high missing rate. Therefore, we
build the self-attention layer on top of the recurrent imputation
process, in order to obtain the complement inputs for attention
calculation.

Considering capturing temporal dependencies in time series,
our method is also related to the forecasting approaches [24]–
[28]. In particular, there are other approaches that augment
a global time series model with local parameters [29]–[31]
and local models for multi-variables [32]. However, these
models focus on predicting future values of a target series
using exogenous time series, and cannot be directly used
in our problem that the input time series has numbers of
missing values. The densely connected network for short-
term enhancement is inspired by DenseNet [33], but there are
key differences. [33] is designed to alleviate the vanishing-
gradient problem for deep architectures, but our method is
to alleviate the inaccuracy of imputed values and better learn
relationships between sequential time points.

III. METHODOLOGY

In this section, we introduce the details of our proposed
method. We first formulate the problem and introduce the basic
notations. Then, we introduce the two main parts of proposed
method: global and local RNNs for recurrent imputation, and
hybrid self-attention.

A. Overall Architecture

A multivariate time series X can be viewed as a ma-
trix, with T observations1 and D variables, and denoted as
X = [x1,x2, ...,xT ]

>, where xt = [x1t , x
2
t , ..., x

D
t ]
> ∈ RD

represents the vector of variables at time t. The d-th series
xd = [xd1, x

d
2, ..., x

d
T ]
> ∈ RT stands for the d-th variable

over time. Since X carries missing values, we introduce a
masking matrix M = [m1,m2, ...,mT ]

> ∈ RT×D, where
mt ∈ {0, 1}D denotes which variables are missing at time
stamp t: if xdt is missing, md

t = 0; otherwise md
t = 1. The

purpose of multivariate time series imputation is to impute
the missing values in X as accurately as possible. The overall
framework is shown in Figure 1. We first use a global RNN
and a set of local RNNs to learn the short-term temporal

1The length of each series is not necessarily the same. For notational
convenience, we assume the time dimension is T for all series.
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Fig. 1: Overall framework. The input data with missing values is first sequentially imputed through global and local RNNs
in the recurrent imputation process, and then fed into a multi-directional self-attention layer. The final imputed value is the
combination of estimations obtained by recurrent layers and attention layer.

relationships sequentially, and then use a hybrid multi-head
self-attention layer to learn long-term correlations across time
and features.

B. Recurrent Imputation

We use a global GRU to learn the mixed information of
all variables, and a set of local GRUs to capture different
dynamics of individual variables.

1) Global Model: We feed the input vector xt at timestamp
t into an RNN to obtain a hidden representation which con-
tains the mixed information of D variables. A time-decayed
GRU variant in [13] is adopted to sequentially process the
incomplete time series. Supposing δt ∈ RD is the time interval
between two adjacent existent values, a temporal decay factor
γt ∈ Rp is introduced as,

γt = exp{−max(0,W>
γ δt + bγ)}, (1)

where Wγ ∈ RD×p and bγ ∈ Rp are learnable parameters,
and p is the predefined size of hidden vectors. Then the time
decayed hidden state h′t−1 ∈ Rp can be obtained by h′t−1 =
γt ◦ ht−1, where ◦ denotes the element-wise multiplication.
Based on the hidden state h′t−1, we can obtain an estimated
vector x̂gt for the next timestamp t by linear regression as,

x̂gt = Wgh
′
t−1 + bg, (2)

where Wg ∈ RD×p and bg ∈ RD are model parameters to
be learned. The next hidden state ht can be obtained by,

xcgt = mt ◦ xt + (1−mt) ◦ x̂gt, (3)

ht = GRU(h′t−1,x
c
gt), (4)

where xcgt is a complement vector with which the missing
values in xt are replaced by the corresponding estimated
values in x̂gt. The above process is performed recurrently,
and we can obtain a set of hidden states that contain historical
information of multiple variables.

2) Short-term Enhancement: Instead of directly using the
above global RNN to perform imputation sequentially, we
use a densely-connected RNN, namely denseRNN, to enhance
short-path connections between current timestamp and the
previous ones. Inspired by [33] which connects each layer to
every other layer in a deep neural network, we connect the
hidden states of timestamps to allow useful information flow
through shortcuts. To enhance the short-term correlations, we
first obtain a vector ut containing a collection of historical
hidden states within a window,

ut = f([ht−k;ht−k+1; ...;ht−1]), (5)

where f(x) = W>
u x+ bu is a transformation function, ut ∈

Rq , with the learnable parameters Wu ∈ Rkp×q and bu ∈ Rkp.
Then the combined information can be obtained as,

ĥt = [ht;ut], (6)

where ĥt contains information from the current state and
the weighted sum of previous k states. After obtaining the
historical latent representation, we use a fully connected layer
to predict variable values,

x̃gt = W>
h ĥt−1 + bh, (7)

where Wh ∈ R(p+q)×D and bh ∈ RD are model parameters
to be learned. In this way, we can obtain the estimation
x̃gt using historical observations. In practice, k is chosen to
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be small (<= 3), as the information from a relatively far
timestamp in the short-term range tend to be less important.
In our method, the short-term enhanced estimation x̃gt is used
as the global imputation value, in substitute of x̂gt. In the
following sections, x̃gt and x̂gt are used interchangeably.

The proposed denseRNN should not be confused with per-
forming attention [34] on hidden states. DenseRNN enhances
the dependencies among states within a short-term range.
In contrast, attention mechanism is performed on all the
historical states, which may import noisy information if some
long-term states are not that important. Moreover, instead of
using conventional attention mechanism on hidden states, in
subsection III-C, we will introduce a hybrid self-attention
mechanism learns the long-term dependencies directly from
the observed space.

3) Local Models: In multivariate time series, different
time series may exhibit different patterns, e.g., in the lab
measurements of human health, some variables remain stable
during a long time interval on account of the homeostatic prop-
erties of human body; other variables however may change
dramatically due to the status of diseases. Using an RNN
with mixed variables as inputs may not sufficiently capture
the dynamics of individual variables. Therefore, in addition to
the global imputation, we use a set of {RNNd}Dd=1 to capture
the temporal information for each series separately. However,
calculating the set of local RNNs can be time consuming,
especially when there are a large number of variables. To
overcome this issue, inspired by the forecasting model in [32],
we propose a time-decayed multivariate GRU cell, named as
tMGRU, to learn variable-wise hidden states for time series
with missing values.

Given a hidden state matrix Ht which represents individual
variables at timestamp t, we denote it as Ht = [h1

t , ...,h
D
t ] ∈

RD×ps with hdt ∈ Rps representing the hidden state of d-th
variable, and ps the dimension of the hidden vector. Similar
to the global imputation, we first obtain a temporal decay
factor γst ∈ RD×ps indicating the patterns of consecutive time
intervals for individual variables, and then calculate the time
decayed hidden state matrix H′t−1 = γst ◦ Ht−1. Since the
input vector xt contains missing values, which is harmful to
the sequential learning process, we estimate the missing values
for each variable using its hidden representation as,

x̂st = Ws ~Ht + bs, (8)

where Ws ∈ RD×ps and bs ∈ RD are the learnable
parameters, ~ is the tensor dot operation and x̂st ∈ RD
is the estimated vector at time t. Similarly to Eq. (3), we
can obtain a complement vector xcst by replacing the missing
values in xt using the estimated values in x̂st. Utilizing the
global information obtained in Eq. (4), we concatenate ht with
each element of xcst, and use the obtained vector as the input of
tMGRU. With the hidden state matrix H′t−1 and complement

input xcst, we can obtain the next hidden state matrix Ht using,

γt =exp{−max(0,Wdγδt + bγ)}, H′t−1 = γt ◦ Ht−1,
zt = σ(Wz ~H′t−1 + Uz ~ [xcst;ht−1] + bz),

rt = σ(Wr ~H′t−1 + Ur ~ [xcst;ht−1] + br),

H̃t = tanh(rt ◦Wh ~H′t−1 + Uh ~ [xcst;ht−1] + bh),

Ht = zt ◦ H′t−1 + (1− zt) ◦ H̃t,
(9)

where σ(·) is the activation function, ht is the hidden state
obtained from global RNN in Eq. (4), Wdγ ∈ RDs , Wz ,Wr,
Wh ∈ RD×ps×ps and Uz,Ur,Uh ∈ RD×ps×1 are learnable
parameters. The terms Wz,r,h ~Ht−1 and Uz,r,h ~ xt cap-
ture the update from last hidden state and the current input
respectively.

The tensor dot operation ~ is the product of two tensors
along the D axis, e.g., W ~ Ht−1 = [W1h1

t , ...,W
DhDt ]

>

where Wdhdt ∈ Rps . The tensor product makes variable-wise
GRUs to be learned in a parallel manner, which improves the
training efficiency. The tMGRU calculates a set of independent
GRUs, each of which processes the parameters for one series.
With this process, we can obtain a group of representations
{hdt }Dd=1 for different variables.

Given the global representation ht and variable-specific
representations Ht, we integrate them to obtain a weighted
estimation by,

x̂t = α1x̂gt + α2x̂st, (10)

where α1 = softmax(W>
rght/(W

>
rght +W>

rsh
d
t )) with W

to be learned. α2 is defined in a similar way. In this way, we
can obtain the historical imputation x̂ that can fully utilize the
multivariate information and variable-specific characteristics.
In practice, we use bi-directional global and local RNNs to
capture the dependencies from past and future timestamps. In
each timestamp, we use x̂t obtained in Eq. (10) in substitute
of x̂gt in Eq. (3) and x̂st in Eq. (9) to obtain a more accurate
complement vector as input of the next timestamp.

C. Multi-directional Self-Attention

Although the aforementioned global and local recurrent
models for imputation are capable of utilizing short-term
memories, they cannot effectively capture the long-term cor-
relations. Therefore, we further propose to conduct direct
connections between two arbitrary variables on top of recurrent
imputation. Previously, self-attention mechanism [20] has been
employed to capture long-term correlations between feature
vectors across time [23]. However, this time-level attention
mixes the information from multivariate series and ignores the
correlations between individual series, which may not fully
reveal the dynamic patterns of individual variables. Therefore,
we propose a multi-directional self-attention mechanism, so
that distant correlations of individual values can be captured.

The proposed self-attention layer contains two blocks, i.e.,
time-level attention and variable-level attention. With the
hidden state tensor H = {Ht}Tt=1 ∈ RT×D×ps obtained in
Section III-B, we map the it into queries, keys and values
through linear embedding operations. For time-level attention,
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we obtain QT ∈ RT×dt and KT ∈ RT×dt , and for variable-
level attention, we obtain QF ∈ RD×df and KF ∈ RD×df ,
where dt and df are the embedding dimensions. The value
V ∈ RT×D×dv is shared between two attention blocks. Thus,
the attention map AT can be obtained by,

AT (H) = Softmax(
QTK

>
T√

dt
), (11)

where AT is a T ×T matrix whose entry (i, j) represents the
strength of connection between vectors hi and hj in H. The
output of self-attention is the weighted sum of values,

OT (QT ,KT ,V) = ATV, (12)

where OT ∈ RT×D×dv . Following a similar procedure, we
can obtain the feature-level attention map AF by calculating
the dot product of QF and KF followed by the rescaling and
softmax operations. After that, we can obtain the variable-level
attentional output OF = AFV ∈ RT×D×dv .

In practice, we employ the multi-head attention (MH) [20],
which maps the query, key and value vectors into different
subspaces and is expected to help the model capture different
semantic correlations. Assuming we have h subspaces, we
will obtain h output vectors. We can concatenate those output
vectors and map it into the final output vector via a linear
projection,

MH(Q,K,V) = Concate(head1, ..., headh)W
O,

where headi = Attn(QWQ
i ,KWK

i ,VWV
i ),

(13)

where WO, WQ
i , WK

i and WV
i are the parameters of linear

projections. We apply the multi-head self-attention on time
and feature levels simultaneously, and obtain both time-time
and feature-feature relationships. The two attentional outputs
OT and OF are then combined via a linear mapping layer to
obtain a hybrid representation,

OTF = W>
TF [OT ;OF ] + bTF , (14)

where WTF ∈ R2dv×dv and bTF ∈ Rdv are two learnable pa-
rameters. The output tensor OTF ∈ RT×D×dv is then mapped
to the input space of X through a multi-layer perceptron,

X̃ = FC(OTF ),

where X̃ ∈ RT×D is the output of the framework, i.e.,
the attentional estimation of the multivariate time series xt.
The final estimated value xet is a weighted average of x̂t
and x̃t whose weights λ1 and λ2 are calculated using a
similar strategy as in Eq. (10). The imputation loss is the
mean absolute error (MAE) between the estimated values
and observed ones. To accelerate the convergence speed, we
accumulate all the estimation errors,

L =
1

N

N∑
n=1

T∑
t=1

mt◦(|xt − x̃t|+|xt − x̂t|+|xt − xet |), (15)

where N is the number of training data examples, i.e., the
number of multivariate time series in the dataset.

IV. EXPERIMENTS

In this section, we compare the proposed method with
state-of-the-art approaches on a synthetic dataset and three
real-world datasets. We investigate three different missing
scenarios. The proposed imputation method is evaluated on
two tasks: imputation and downstream classification.

A. Datasets

1) Synthetic Data: Based on a similar constructing process
introduced in [3], we generate a set of multivariate time
series using the seasonal vector autoregression (SVAR(K, k))
equation,

yt =

(
1−

K∑
i=1

φs,iB
si

) k∑
i=1

φiyt−i+

K∑
i=1

φs,iyt−si+εt, (16)

where yt ∈ Rd is the vector at time t, εt is the noise term
sampled from a multivariate Gaussian distribution, {φi}ki=0

and {φs,i}Ki=0 ∈ Rd×d are the coefficients, s denotes the
period, B is the backshift operator, and the lags k and K
are set to 4 and 2 respectively. We first generate 50 time
series as seeds using Eq. (16) with randomly sampled {φi}ki=0,
{φs,i}Ki=0 and εt. The length of each time series is 40. We
then synthesize 15 time series from each seed by adding
different kinds of noise. In this way, each seed generates
one cluster/class, and its noisy copies belong to the same
cluster/class.

2) Real-world Data: We perform experiments on three real-
world datasets, including a medical dataset which contains
physiological variables, and two urban sensory datasets about
air and meteorology, as follows:

• Air Quality Data (Air). This dataset recorded air quality
data such as PM2.5 and PM10 hourly. Following [9],
we use the PM2.5 measurements from 36 stations in
Beijing, and use the PM2.5 values at the 3rd, 6th, 9th,
and 12th months as the test data and the other months
as the training data. We randomly select 36 consecutive
time steps as one time series. The missing pattern is not
distributed uniformly.

• KDD CUP 2018 Dataset (KDD18). KDD18 is a public
air quality and meteorology dataset that comes from KDD
CUP Challenge 20182. It contains historical observations
from 11 stations in Beijing recorded hourly. We use 11
variables including PM2.5, PM10, temperature, pressure
and so on. We split the data for every 48 hours, and obtain
167 data samples.

• PhysioNet Challenge 2012 Dataset (PhysioNet). This is
a medical dataset from PhysioNet Challenge 2012 [35].
It consists of 4,000 multivariate clinical time series from
intensive care unit (ICU). Each time series contains 35
measurements such as Albumin, heart-rate, etc. Mortality
prediction is performed as a downstream task on this
dataset.

2http://www.kdd.org/kdd2018
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B. Experimental Setup
1) Baseline Methods: We compare our method with various

widely-used imputation methods and state-of-the-art methods,
including replacement methods, conventional machine learn-
ing based and RNN-based methods.
• Replacement Method. We simply replace the missing

values using last observation before current time, or the global
mean of corresponding variables.
•KNN [4]: For each data sample, we use k-nearest neighbor

with Euclidean distance to find the similar vectors across
different time stamps, and impute the missing values with
weighted average of its neighbors.
•MICE [6]: Multivariate Imputation by Chained Equations

(MICE) fills the missing values by updating regression models
iteratively.
• GRU-D [1]: It is designed for health-care prediction with

missing values. It imputes the missing value with the weighted
combination of last observation, global mean, and a recurrent
component.
• TBM [18]: It bidirectionally updates the imputed values

within a reliable time window.
• M-RNN [8]: It uses a multi-directional recurrent neural

network that interpolates missing values within data streams
and imputes across data streams.
• GAN-I [13]: It is a two stage model. It uses GAN

to learn the distributions of time series, and optimizes the
reconstruction loss and adversarial loss. The “noise” input
vector is optimized to find the best matched input of the
generator.
• E2GAN [14]: It is an end-to-end generative model, which

impute the incomplete time series by the nearest generated
complete time series at one stage. The generator takes a ran-
dom vector as the input and tries to compress and reconstruct
the time series, as well as fooling the discriminator.
• BRITS [9]: This method uses bi-directional RNN com-

bined with cross-sectional feature regression to estimate the
missing values.

To evaluate the contribution of different components in the
proposed framework, we conduct the following ablation study.
GLIMA-g is the proposed model without global imputation.
GLIMA-l is without local imputation. Since the hidden states
of different series in the global model is mixed, multi-
directional self-attention cannot be applied. Therefore, we add
only the time-dimensional self-attention on top of the global
model to form GLIMA-l. GLIMA-a is the model without
attention mechanism. Besides, we compare with utilizing self-
attention (Attn) alone and the missing values are initialized
with global mean.

2) Evaluation: We evaluate the proposed method on two
tasks: imputation and downstream tasks. For the imputation
performance, we randomly drop some values from the ob-
served data and use them as the groudtruth values. We measure
error between imputed values and the groundtruth in terms of
mean absolute error (MAE) and mean relative error (MRE)
as defined in [9]. For downstream tasks evaluation, we follow
a two-step procedure: first complete the missing values using

the imputation methods, and then train a classification model
and report the accuracy values. Note that for downstream tasks,
we have two types of missing values: intrinsically missing and
randomly dropped values.

3) Implementation Details: We implement all the RNN-
based baselines and the proposed method with PyTorch and
keep the same number of hidden units. Adam [36] optimizer
is used with the learning rate 0.001. Early stopping strategy
is adopted when the validation error does not improve for
10 epochs. For GAN-I and E2GAN, we use the provided
Tensorflow source code. The number of parameters in different
models are kept roughly the same for fair comparison. The
batch size is set to 64. The input datasets are normalized with
zero mean and unit variance. We use one attention layer with
head number 8, since we empirically find that using more
attention layers does not help much in imputation. The non-
RNN baselines are implemented using FancyImpute3 package.
For downstream tasks, we use five-fold cross validation to
evaluate the classification performance.

C. Experimental Results

1) Evaluation on Synthetic Dataset.: The comparison of
imputation and downstream performances on synthetic dataset
are shown in Table I and Table II respectively. We compare
the results with different missing rates, i.e. 10%, 30% and
50%, which indicate the percentage of values that have been
randomly dropped. MAE and MRE are used to evaluate the
deviance between imputed values and the ground truths, and
smaller MAE/MRE values indicate better performance. With
the completed dataset, subsequent downstream analysis can be
performed based on the application scenarios. For the synthetic
dataset, we evaluate two downstream tasks: classification and
clustering. Random forest classifier and K-means clustering
algorithm is trained on datasets imputed via different meth-
ods. Accuracy and Normalized Mutual Information (NMI)
measurements are reported for classification and clustering
respectively. Detailed discussions about model comparisons
and analysis are provided in the following subsections on real-
word datasets.

TABLE I: Performance evaluation for imputation task on
synthetic dataset with different missing rates.

Methods 10% 30% 50%

MAE MRE MAE MRE MAE MRE
Last .8308 1.271 .8149 1.259 .8213 1.282

Mean .6435 0.984 .6399 0.989 .6398 0.991
KNN .6840 1.047 .6697 1.035 .6685 1.043
MICE .6481 0.992 .6483 1.002 .6477 1.011

GRU-D .8032 1.239 .7803 1.205 .7740 1.205
TBM .7464 1.151 .7663 1.184 .7943 1.237

M-RNN .4978 0.768 .5878 0.908 .6110 0.951
BRITS .3265 0.503 .4870 0.752 .5865 0.913

Attn .6312 0.973 .6334 0.977 .6351 0.989
GLIMA .2751 0.421 .3636 0.562 .5609 0.876

3https://github.com/iskandr/fancyimpute
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TABLE II: Performance evaluation for classification and clus-
tering tasks on synthetic dataset with different missing rates.

Methods 10% 30% 50%

Accu. NMI Accu. NMI Accu. NMI
Last .9515 .9447 .7747 .6909 .5899 .5325

Mean .9624 .9685 .8573 .8147 .6800 .6433
KNN .9589 .9749 .8104 .8073 .6187 .6527
MICE .9581 .9573 .8277 .8105 .6691 .6468

GRU-D .9592 .9541 .8043 .7174 .6264 .5441
TBM .9555 .9645 .7829 .7641 .6184 .5825

M-RNN .8152 .8175 .5171 .5967 .3163 .4747
BRITS .9880 .9822 .9216 .9302 .6896 .7042

Attn .9642 .9648 .8376 .8548 .6679 .6954
GLIMA .9843 .9947 .9341 .9502 .7547 .7775

2) Imputation Performance Comparison: We investigate
three data missing scenarios, i.e., element-wise missing, block-
wise missing and fixed missing values on PhysioNet, KDD18
and Air datasets respectively. For element-wise missing, we
randomly remove 10% values of the dataset as the testing
data. For block-wise missing, the records from certain sensors
are continuously eliminated for a certain period (time length
is set to 5). For fixed pattern missing, we follow the strategy
of missing value selection used in [37]: finding the missing
entries in each month’s data, and if entries at the same
timestamp are not absent in the next month, their values
are used as the ground truth. The comparison of imputation
performance on three datasets is shown in Table III. MAE is
used to evaluate the deviance between imputed values and
the ground truths, and smaller MAE values indicate better
performance. We evaluate the performance on normalized
space for PhysioNet and KDD18 datasets, and map the data
to original space for evaluation on Air dataset.

TABLE III: Performance evaluation for imputation tasks (in
MAE).

PhysioNet KDD18 Air
(element-wise) (block-wise) (fixed missing)

Last 0.4344 0.4345 45.30
Mean 0.6910 0.5378 55.51
KNN 0.3671 0.3290 29.79
MICE 0.5688 0.2424 27.42

GRU-D 0.4366 0.6467 50.80
TBM 0.4327 0.5146 45.92

M-RNN 0.2924 0.2669 14.13
BRITS 0.2750 0.2178 11.05
GAN-I 0.6470 0.9170 47.38
E2GAN 0.7010 0.8911 45.46

Attn 0.4481 0.4174 18.62
GLIMA-a 0.2705 0.2101 10.71
GLIMA-g 0.2893 0.2242 11.19
GLIMA-l 0.2830 0.2186 10.56
GLIMA 0.2647 0.2087 10.54

As we can see from Table III, the simple replacement
methods are inaccurate, as they ignore the statistical irregular-
ities of the data. KNN and MICE take into consideration the
relationships among features, but do not model the temporal

dependencies explicitly. GRU-D and TBM assume that the
missingness is correlated with labels, and impute the missing
values implicitly in the process of optimizing classification
errors. Since they do not explicitly optimize the imputation
error, their performance on the imputation task is not well,
but they actually perform very well on classification tasks.
M-RNN and BRITS both utilize RNN to capture the tem-
poral dependencies and consider feature correlations at each
timestamp, and they can achieve rather good performance.
Specifically, since BRITS also learns the relationship among
missing values by feeding the complement vector as the input
of the RNN cell, the imputed values can be better updated.

Compared to the baselines, the proposed method obtains
more accurate imputation results. In our method, global tem-
poral dependencies and local properties of individual series
can be fully captured during the recurrent imputation process.
By comparison with Attn, we find that utilizing self-attention
alone does not perform well, since it needs a good initialization
of the missing values to obtain the relationship between
query and keys. In the proposed method, self-attention is well
initialized through recurrent imputation, so that the time-level
and feature-level dependencies can be better learned.

3) Downstream Task Evaluation: Completing the missing
values enables subsequent analysis of time series. In this
subsection, we exploit how imputation accuracy can impact
downstream tasks. We follow a two-step procedure: first im-
pute the datasets with different imputation methods, and then
train the same classification model with different completed
datasets after imputation to evaluate the downstream task
performances. We use logistic regression (LR) [38], support
vector machine (SVM) [39] with radial basis function (RBF)
kernel, random forest (RF) [40] and RNN as the classifier.
We compare the classification accuracy on PhysioNet as
shown in Table IV. The area under curve (AUC) scores are
reported. We can see that RNN-based methods generally out-
perform conventional imputation methods. The performance
of downstream tasks following different imputation methods is
generally in accordance with their imputation accuracy, which
indicates that the high quality of imputed data benefits the
downstream tasks. We also observe that relative performances
of some methods between imputation and downstream tasks
are not always consistent. In fact, many factors could affect
the downstream evaluation. For GAN-I and E2GAN, AUC
values in Table IV are reported from the original papers, and
the classification methods may have different hyperparameter
settings as ours, e.g., number of trees in RF, structure of RNN
cell (they use a specifically designed GRUI cell). Moreover,
Mean performs worse in imputation, but it can be competitive
with other methods in mortality classification on PhysioNet.
This may be due to the fact that in healthcare area, missing
values tend to be close to some default values such as last
observed ones or variable means, and these default values can
provide some indication of the mortality probabilities. Note
that the purpose of evaluating downstream task is not to find
out the best imputation method, but to provide some insight
about how an accurate imputation algorithm can be beneficial
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to downstream tasks.

TABLE IV: Performance evaluation for downstream classifi-
cation on PhysioNet (in AUC).

Method LR SVM RF RNN
Last 0.6935 0.8030 0.8037 0.8177

Mean 0.7032 0.7931 0.8137 0.8163
KNN 0.6926 0.7961 0.8052 0.8146
MICE 0.6438 0.7413 0.7481 0.7790

GRU-D 0.6796 0.8092 0.8124 0.8192
TBM 0.6892 0.7871 0.8026 0.8364

M-RNN 0.7240 0.7993 0.8052 0.8306
BRITS 0.7262 0.8103 0.8006 0.8551

GAN-I [13] 0.701 0.816 0.755 0.8603
E2GAN [14] 0.7955 0.820 0.7998 0.8724

Attn 0.6815 0.7882 0.7943 0.8045
GLIMA-a 0.7357 0.8224 0.8209 0.8627
GLIMA-g 0.6907 0.8429 0.7969 0.8713
GLIMA-l 0.7194 0.8020 0.8216 0.8489
GLIMA 0.7684 0.8237 0.8347 0.8692

4) Change of Missing Rates: To investigate the perfor-
mance change under different ratios of training and testing
data, we change the missing rate from 20% to 70% on KDD18
dataset. The results are shown in Table V. It can be seen that
the performance of all methods decreases under high missing
rates. This is due to the fact that more data helps to better
capture the complex temporal and feature correlations. We
evaluate the performance under random element-wise missing
in Table V. Compared to block-wise missing in Table III,
all methods generally obtain better MAEs, which indicates
that block-wise missing is a more difficult problem. Still, the
proposed method obtains the best performance.

TABLE V: Imputation evaluation on KDD18 dataset with
different element-wise missing rates (in MAE).

20% 30% 40% 50% 60% 70%
Last .266 .268 .302 .328 .360 .408

Mean .507 .507 .508 .509 .511 .515
KNN .255 .368 .282 .299 .321 .355
MICE .244 .252 .261 .274 .288 .310
TBM .432 .459 .447 .473 .484 .509

M-RNN .290 .314 .327 .338 .361 .381
BRITS .214 .221 .230 .240 .253 .270
GAN-I .736 .859 .793 .847 .895 .749
E2GAN .757 .796 .794 .796 .796 .795

Attn .272 .304 .324 .347 .373 .406
GLIMA-a .194 .203 .213 .229 .240 .261
GLIMA-g .195 .199 .209 .221 .234 .255
GLIMA-l .215 .221 .230 .241 .254 .268
GLIMA .186 .198 .203 .213 .229 .242

5) Attention Visualization: To analyze the short-term and
long-term dependencies captured by our method, we visualize
the attention scores obtained by the multi-directional self-
attention mechanism. In Figure 2 and Figure 3, we pick two
multivariate time series data samples from KDD18 dataset,
and visualize the time-level and feature-level attention maps
along with their corresponding variable values. The darker
color indicates a higher attention score. Note that since we

use a mask to remove the effect of an observed variable on its
own estimated values, the diagonal units in the attention maps
are set to zero.

From Figure 2a on temporal attention, we can find that
the data points at most timestamps have stronger correlation
with nearby timestamps, which indicates that the last few
timestamps have more impact on current timestamp for this
data sample. From Figure 2b on feature-level attention, we
can see that PM2.5, NO2 and CO have higher attention score
with each other. This can be verified by variable dynamics as
shown in Figure 2c, where the temporal patterns of the three
variables are closely related to each other.
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Fig. 2: Visualization of attention scores: case study 1.

From Figure 3a, we can find that the data points near
timestamps 10 and 40 have stronger correlation than with
others. This can be verified from the original data as depicted
in Figure 3c. Similarly, from Figure 3b and Figure 3c, we can
see that the close relationship between PM2.5 and CO has
been captured by the attention map.

V. CONCLUSION

In this paper, we propose GLIMA, a deep imputation model
for multivariate time series with missing values. GLIMA com-
bines global recurrent imputation that captures the mixed in-
formation from all variables and local recurrent imputation that
captures patterns specific to individual variables. Specifically,
a time decayed multi-variate GRU based on tensor operation
is proposed to efficiently calculate the variable-wise hidden
states. Moreover, multi-directional self-attention is employed
to exploit both the cross-time and cross-feature correlations in
the data. The recurrent imputation process and the attention
mechanism allow us to capture the short-term and long-term
dependencies at the same time. We conduct experiments on
three real-world datasets with different missingness patterns
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Fig. 3: Visualization of attention scores: case study 2.

in comparison with extensive state-of-the-art methods. The
experimental results show that the proposed model is not
only able to achieve superior imputation performance, but also
able to improve downstream tasks where the input time series
datasets are pre-imputed.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their valuable comments and helpful suggestions. This
work is supported in part by the US National Science Foun-
dation under grants IIS-2008208, IIS-1955151, OAC-1934600
and IIS-1938167. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES

[1] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent
neural networks for multivariate time series with missing values,”
Scientific reports, 2018.

[2] Y. Zheng, X. Yi, M. Li, R. Li, Z. Shan, E. Chang, and T. Li, “Forecasting
fine-grained air quality based on big data,” in Proceedings of the 21th
ACM SIGKDD, 2015.
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