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ABSTRACT

This paper develops the Correlation Networks (CorNet) architec-
ture for the extreme multi-label text classification (XMTC) task,
where the objective is to tag an input text sequence with the most
relevant subset of labels from an extremely large label set. XMTC
can be found in many real-world applications, such as document
tagging and product annotation. Recently, deep learning models
have achieved outstanding performances in XMTC tasks. However,
these deep XMTC models ignore the useful correlation informa-
tion among different labels. CorNet addresses this limitation by
adding an extra CorNet module at the prediction layer of a deep
model, which is able to learn label correlations, enhance raw la-
bel predictions with correlation knowledge and output augmented
label predictions. We show that CorNet can be easily integrated
with deep XMTC models and generalize effectively across different
datasets. We further demonstrate that CorNet can bring significant
improvements over the existing deep XMTC models in terms of
both performance and convergence rate. The models and datasets
are available at https://github.com/XunGuangxu/CorNet.
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1 INTRODUCTION

Extreme multi-label text classification (XMTC) is a Natural Lan-
guage Processing (NLP) task, which aims to tag a given text with
the most relevant subset of labels from an extremely large label
set. For example, there are more than one million product labels
on Amazon and when a new product becomes online, XMTC tries
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to tag the new product with the most relevant Amazon product
labels based on its description text. It is worth mentioning that
multi-label classification is different from multi-class classification
in that multi-label classification predicts a subset of relevant labels,
whereas multi-class classification predicts a single label. Due to the
rapid growth of data scale in various industrial applications in re-
cent years, such as product labeling for e-commerce [1], biomedical
text annotation [31] and Wikipedia category tagging [25], XMTC
has garnered increasing attention.

XMTC is a challenging NLP task as one needs to deal with a
huge number of labels and training samples. Current XMTC models
can be roughly grouped into four categories: 1) one-vs-all models
[2, 37] which learn a separate classifier for each label, 2) embedding
based models [5, 30] which represent labels in a low-dimensional
embedding space, 3) tree based [15, 16, 18, 27] models which learn
a label hierarchy to improve model efficiency and 4) deep learn-
ing based models [6, 17, 21, 33, 38] which employ deep learning
techniques.

As in many other NLP tasks, deep learning based models have
also achieved the state-of-the-art performance in XMTC, thanks to
the recent development of deep learning techniques [3, 7, 9, 12, 13,
20, 32]. A deep multi-label text classification model is normally com-
posed of two components: the first component extracts information
from the text sequence and the second component converts the
extracted features into label predictions. According to the sequence
modeling style in the first component, deep XMTC models fall into
three main categories: 1) Recurrent Neural Networks (RNN) based
[17, 33, 38], 2) Convolutional Neural Networks (CNN) based [21]
and 3) Bidirectional Encoder Representations from Transformers
(BERT) based models [6]. In contrast to the various choices of se-
quence modeling styles for the first component, the choices for the
second component to predict labels are quite limited and the most
common choice is a fully connected (FC) layer. A less popular choice
[36] is to follow the sequence-to-sequence (Seq2Seq) [29] paradigm
and use an RNN decoder to generate predicted labels sequentially,
but the underlying assumption of Seq2Seq is not suitable for XMTC
since labels are not ordered.

Using a fully connected layer to map feature vectors to label
predictions is simple and straightforward, but it fails to take full
advantage of the correlations among different labels. For instance, if
we have high confidence that an Amazon product should be labeled
with “Blues” and “R&B”, then it probably should also be labeled with
“Music”. This correlation information is able to help us obtain more
accurate label predictions. Therefore, in order to make better use
of the label correlations, we propose a new network architecture,
named Correlation Networks (CorNet). The proposed architecture
works as an add-on enhancer module to existing deep XMTC ar-
chitectures to form a new end-to-end model. The resulting CorNet
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Figure 1: A CorNet building block.

model is able to improve over the original architecture by allowing
it to promote correlated predictions and demote uncorrelated pre-
dictions. Specifically, CorNet is an independent module that can be
added after the last label prediction layer of a deep XMTC model.
As a result, a CorNet model capable of utilizing label correlations
is constructed. It is noteworthy that, rather than come from some
external knowledge base, the label correlation knowledge comes
from the label co-occurrence patterns within the XMTC dataset. In
other words, CorNet models do not pose more training restrictions
or require extra knowledge than regular deep XMTC models. To
sum up, CorNet has the following advantages:

o CorNet is able to exploit the correlation information among
different labels.

e CorNet is a general and independent architecture that can
be directly integrated with any deep XMTC model without
changing the model.

e CorNet models consistently achieve significant improve-
ments over the state-of-the-art deep XMTC models on bench-
mark datasets.

e CorNet models converge faster than the original models
during training.

2 RELATED WORK

One-vs-all XMTC models [2, 37] treat each label as an independent
binary classification problem. These models usually achieve high
accuracy, but inevitably suffer from expensive computational cost,
especially when the label set is huge. Tree based XMTC models [15,
16, 18, 27] reduce the computational cost by creating a tree hierarchy
for the labels. For example, Parabel [27] recursively partitions the
labels into two balanced tree branches and the leaf models are one-
vs-all models with much smaller label vocabularies. Embedding
based XMTC models [5, 30] use embeddings to represent labels
and perform the similarity search for labels in the low-dimensional
embedding space. The low-dimensional label embeddings are able
to boost the model efficiency, but also hurt the model performance.

The aforementioned approaches represent the traditional XMTC
models. In recent years, as deep learning continues to advance
in various domains, such as NLP [3, 20, 32, 34, 35] and computer
vision [11, 12], deep XMTC models have also gained increasing
popularity and achieved better performances than the traditional
models [21, 38]. The focus of this paper would also be on deep
XMTC models. Unlike most traditional XMTC models taking as
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Figure 2: Framework of a CorNet model.

input bag-of-words features, e.g., tf-idf features, deep XMTC models
take text sequences as input, which are supposed to contain richer
semantics as the word order information is preserved. Therefore,
the first step of deep XMTC models is to convert an arbitrary-length
text sequence to a fixed-dimensional feature vector. AttentionXML
[38] and MeSHProbeNet [33] utilize RNNs and attention mechanism
to extract information from the input text sequence. The attention
mechanism selectively pays attention to different parts of the input
based on their semantics and generates a weighted sum vector
as the summary of the input text. XML-CNN [21] utilizes CNNs
to extract features from the input text sequence. Each CNN filter
carries one semantic pattern and outputs a feature map. Then a
max pooling operation is applied over the feature map along the
sequence dimension to get the feature corresponding to this filter.
X-BERT [6] utilizes a BERT encoder with multi-head self-attention
to extract information from the input text sequence.

There is one limitation in the existing deep XMTC models, which
is the inability to fully exploit the label correlation information. Pre-
vious studies [10, 24] have shown that correlations between label
pairs contain useful information for label prediction. This inspires
us to incorporate label correlations into deep XMTC models. In-
stead of just using pairwise label correlations, our proposed CorNet
architecture is able to exploit label correlations of all patterns.

3 CORNET

A CorNet block is a computational unit which maps raw label pre-
dictions to enhanced label predictions based on label correlations. A
CorNet building block is illustrated in Figure 1. Formally, a CorNet
building block is defined as:
y=F(x)+x, 1)
where x, y are the input and the output of this CorNet block and F
stands for the underlying mapping function. Specifically, x denotes
the raw label predictions before the CorNet block and y denotes
the enhanced label predictions after the CorNet block. For a regular
deep XMTC model without CorNet blocks, output label prediction
x is directly sent to the loss function for training or to the sigmoid
function for prediction, whereas for a CorNet enhanced deep model,
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correlation enhanced label prediction y is used as the final output.
We also add an identity mapping between raw predictions x and
correlation enhanced predictions y. Although theoretically adding
identity mappings between layers does not increase the expressive
power of a neural network, it is able to address the degradation prob-
lem during optimization [12]. The degradation problem refers to
the phenomenon that with the network depth increasing, training
error unexpectedly gets saturated and then even degrades rapidly.
Therefore, it is important for CorNet blocks to have identity map-
pings to avoid the degradation problem, as the depth of a complete
CorNet model has already accumulated in the course of converting
text sequences to raw label predictions x.

Specifically, F is the correlation enhancing function to be learned.
The most straightforward design for function F is one fully con-
nected layer: F(x) = Wx, where W denotes the weight matrix of
the layer, and the bias term and the activation function are omitted
for simplifying notations. In this way, the ith enhanced prediction
y; is a linear combination of all raw predictions {x1, x2, ..., X, ...}
and hence all possible linear correlations between the i label and
other labels are taken into consideration. However, this design of
function F is not practical in terms of memory usage. Let V' be
the number of distinct labels, then W would be a V-by-V matrix.
Since V is usually huge in XMTC tasks, it is hard for W to fit in the
GPU memory. In addition, this design would also be a waste of the
expressive power of the network, as most labels are uncorrelated to
each other and hence most elements in W would be 0s. Moreover,
one fully connected layer only allows us to exploit linear label cor-
relations. To this end, we insert a bottleneck layer between x and y,
as shown in Figure 1. Let R denote the dimension of the bottleneck
layer. By having a bottleneck layer and setting R < V. the model
size is significantly reduced and more complex correlations can be
captured by the additional layer. Therefore, our design for function
F can be formally defined as:

F(x) =W328(W10(x) +b1) + b, (2

where Wy, W are the weight matrices, b1, by are the biases, and
o, 6 are the sigmoid activation function and the ELU [8] activation
function respectively. Recall that x are the raw label prediction log-
its, hence we first need to use the sigmoid activation to convert label
logits x to label probabilities o (x) ranging from 0 to 1, representing
the confidence level of each label prediction. The correlations are
then calculated based on the label probabilities. By doing so, the
interpretability of label correlations is also achieved.

We have assumed that x is the output label predictions of a
deep XMTC network, but actually x could also be the output label
predictions of a previous CorNet block. This means we can stack
any number of CorNet blocks to form a deep CorNet module and
the output of each block is a correlation enhancement over the
output of the previous block. So more complicated label correlations
can be captured by the deep CorNet module. CorNet is a general
architecture and it can be concatenated after any standard deep
XMTC architectures. Figure 2 illustrates the framework of a CorNet
enhanced model. The base module could be seen as a black box
which is responsible for converting a text sequence into raw label
predictions. The CorNet module then enhances the raw predictions
with label correlations and outputs the enhanced label predictions.
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4 CORNET INSTANTIATIONS

Depending on how raw label prediction x is derived, CorNet models
can have different structures. This flexibility of CorNet allows it
to employ different sequence modeling styles as the base module.
To illustrate this point, we develop CorNet models by integrating
CorNet modules with several standard deep XMTC architectures,
described below.

4.1 CorNetXML-CNN

We first consider the construction of CorNet model based on CNN
sequence modeling, which we name CorNetXML-CNN, as shown
in Figure 3a. The base module is the XML-CNN model [21], where
a fixed-dimensional feature vector can be achieved by applying a
set of 1D convolution filters and a dynamic max pooling on the
input word embeddings. This fixed-dimensional feature vector is
used as the aggregate sequence representation. The dimension of
the feature vector is proportional to the number of the convolution
filters: the more the filters, the more the extracted features. One
can adjust the number of convolution filters based on the size of
features needed.

4.2 CorNetBertXML

When utilizing BERT [9] in the base module, we need to make
some modifications so that it is more suitable for the XMTC task.
For classification tasks, BERT always adds a special symbol [CLS]
in front of every input sequence and uses the final hidden state
corresponding to this token as the aggregate sequence representa-
tion. This schema works well for regular classification tasks, but
for extreme classification tasks with a huge number of labels, the
feature size might be insufficient. For example, the typical embed-
ding dimension for deep XMTC models is 300, then BERT will also
output a 300-dimensional hidden state for token [CLS]. Assume
there are 300,000 distinct labels, then a 300-dimensional feature
vector is probably not informative enough to generate a 300,000-
dimensional label prediction. Increasing the feature dimension will
drastically increase the model size and reduce the model efficiency,
as the embeddings, the hidden states and the intermediate self-
attention results will also grow larger. Therefore, we propose to
have multiple special tokens to accommodate to extreme classifi-
cation tasks, as shown in Figure 3b. The multi-head self-attention
mechanism of BERT allows each special token to go over the entire
input sequence and the final hidden state of each special token
can be deemed as a particular feature vector. Specifically, we can
add M classification symbols [CLS_1], [CLS_2], ..., [CLS_M] in
front of every input sequence and use the concatenation of their
final hidden states as the aggregate sequence representation. The
cost of using multiple [CLS] tokens to get wider feature vectors is
much smaller than increasing the feature dimension. We name this
XMTC oriented model BertXML. Accordingly, its CorNet enhanced
version is named CorNetBertXML.

4.3 CorNetMeSHProbeNet

MeSHProbeNet [33] was originally proposed for biomedical docu-
ment annotation, i.e., tagging biomedical documents with relevant
Medical Subject Headings (MeSH) terms. MeSH labeling is also
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Figure 3: CorNet instantiations.

a general XMTC task except that it contains extra journal infor-
mation. Therefore, we first need to remove journal related com-
ponents from MeSHProbeNet to make it suitable for the general
XMTC tasks. MeSHProbeNet models text sequences with bidirec-
tional RNNs. Each MeSH probe is essentially a self-attention that
can extract related information from the RNN hidden states and
output a fixed-dimensional feature vector. The number of probes
M is a preset hyper-parameter. The concatenated feature vector
from all probes is used as the aggregate sequence representation.
Label prediction x can then be calculated based on the concatenated
feature vector. Similarly, we can integrate a deep CorNet module
into MeSHProbeNet to enhance the label prediction, as shown in
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Figure 3¢, where @ denotes attention calculation. We name the
new model CorNetMeSHProbeNet.

4.4 CorNetAttentionXML

Although AttentionXML [38] is also built upon bidirectional RNNs
and attentions, it is quite different from MeSHProbeNet. In fact,
AttentionXML is different from all three basic models we just men-
tioned above, in the sense that all other models try to extract a
feature vector as the aggregate sequence representation for the
entire sequence, while AttentionXML extracts a feature vector for
every distinct label. Specifically, AttentionXML has a self-attention
for every label and each attention generates a feature vector to
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Table 1: Dataset statistics. N¢ygin and Nies; refer to the number of instances in training and test set. D is the vocabulary size
of the input text. L is the number of distinct labels. L and L denote the average number of labels per instance and the average
number of instances per label. W;,4i, and W, refer to the average number of words per training and test instance.

Dataset Ntrain Ntest D L L L Wtrain Wtest
EUR-Lex 15,449 3,865 186,104 3,956 5.30 20.79 1248.58 1230.40
AmazonCat-13K 1,186,239 306,782 203,882 13,330 5.04 448.57 246.61 245.98
Wiki-500K 1,779,881 769,421 2,381,304 501,008 4.75 16.86 808.66 808.56

predict the corresponding label. Thus, AttentionXML is able to
extract specific features for each label, but inevitably suffers from
expensive computational cost. For example, the number of attentive
probes in MeSHProbeNet is normally M € [5, 25], while the num-
ber of self-attentions in AttentionXML is equivalent to the size of
the label set V, which could be in the millions. The final multi-label
prediction vector is obtained by concatenating all individual label
predictions.

Unlike other models where label prediction x is obtained through
a transformation of the aggregate sequence representation, Atten-
tionXML obtains label prediction x through the concatenation of
individual predictions. We can still directly add a deep CorNet
module onto AttentionXML to form a correlation enhanced model,
named CorNetAttentionXML, as shown in Figure 3d. This shows
the flexibility and generality of CorNet, as it can be integrated
with any standard deep XMTC model regardless of how raw label
prediction x is achieved.

5 EXPERIMENTS

In this section, we investigate the effectiveness of CorNet across
different datasets and model architectures.

5.1 Datasets and Experimental Settings

We use three benchmark datasets, including one small-scale dataset
EUR-Lex [23], one medium-scale dataset AmazonCat-13K [22], and
one large-scale dataset Wiki-500K!. The dataset statistics are sum-
marized in Table 1. The training and test split is the same as in the
data source'.

We adhere to the text preprocessing procedure of [38]: for each
dataset, the vocabulary size is limited to 500,000 words according
to the word frequency in the training set. Word embeddings are
initialized with the 300-dimensional pretrained GloVe [26] embed-
dings. Word embeddings are frozen for the EUR-Lex dataset. Input
text sequences are truncated to 500 words if longer. All models are
trained by the Adam optimizer [19] with a learning rate of 1le-3
on Nvidia Titan V GPUs. Stochastic weight averaging [14] is also
utilized to improve generalization.

5.2 Model Configurations

The deep XMTC models included in our experiments are XML-
CNN, BertXML, MeSHProbeNet, AttentionXML and their CorNet
enhanced counterparts: CorNetXML-CNN, CorNetBertXML, Cor-
NetMeSHProbeNet, CorNetAttentionXML. In order to make the
performance comparison as fair as possible, we assign the same

!http://manikvarma.org/downloads/XC/XMLRepository.html
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embedding dimension and hidden size for all models. The detailed
parameter settings for each model are reported below.

5.2.1 XML-CNN. Dimension of embeddings: 300; convolution fil-
ter sizes: 2, 4, 8; number of filters of each size: 128; output size
of dynamic max pooling: 8; dimension of bottleneck layer: 512;
dropout rate: 0.5.

5.2.2 BertXML. Dimension of embeddings: 300; hidden size: 300;
number of BERT layers: 3; number of attention heads: 2; interme-
diate layer size: 600; number of [CLS] symbols: 5; dropout rate:
0.1. For the large dataset (Wiki-500K), we insert a 512-dimensional
bottleneck layer before the output layer to improve efficiency.

5.2.3 MeSHProbeNet. Dimension of embeddings: 300; hidden size:
300; number of RNN layers: 2; number of probes: 5; dropout rate:
0.5. For the large dataset (Wiki-500K), we insert a 512-dimensional
bottleneck layer before the output layer to improve efficiency.

5.2.4 AttentionXML. For the small dataset (EUR-Lex), we set di-
mension of embeddings: 300; hidden size: 256; number of RNN
layers: 1; dimension of fully connected layers: 256; dropout rate:
0.5. For the medium dataset (AmazonCat-13K), we set dimension
of embeddings: 300; hidden size: 200; number of RNN layers: 1;
dimension of fully connected layers: 100; dropout rate: 0.5. For the
large dataset (Wiki-500K), we are not able to fit the model into
our GPU memory, as the model was trained parallelly on 8 GPUs
according to the original paper [38].

5.2.5 CorNetXML-CNN. Same settings as XML-CNN, except for
the integration of a CorNet module with 2 CorNet blocks.

5.2.6 CorNetBertXML. Same settings as BertXML, except for the
integration of a CorNet module with 2 CorNet blocks.

5.2.7 CorNetMeSHProbeNet. Same settings as MeSHProbeNet, ex-
cept for the integration of a CorNet module with 2 CorNet blocks.

5.2.8 CorNetAttentionXML. Same settings as AttentionXML, ex-
cept for the integration of a CorNet module with 2 CorNet blocks.

5.3 Evaluation Metrics

Considering the sparsity of labels in XMTC tasks, a short ranked
list of potentially relevant labels for each test instance is commonly
used to represent classification quality. Following the convention
of the XMTC literature [15, 21, 28, 38], we adopt two instance-
based ranking metrics to evaluate the models: the precision at top
k (precision@k) and the normalized Discounted Cumulative Gain
at top k (MDCG@K). Let z € {0, 1}~ denote the ground truth label
vector of an instance and z € Rl denote the model predicted score
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Table 2: Comparison results on EUR-Lex.

Model P@1 P@3 P@5 N@1 N@3 N@5 #GPUs #hours model size (GB)
XML-CNN 76.81 62.79 5156 76.81 66.44 60.47 1 0.08 0.22
CorNetXML-CNN 78.60 64.22 53.07 78.60 67.81 61.90 1 0.08 0.28
BertXML 77.80 64.57 53.25 77.80 67.97 62.10 1 0.25 0.24
CorNetBertXML 79.02 6549 53.94 79.02 6898 62.97 1 0.29 0.30
MeSHProbeNet 79.92 66.52 55.13 79.92 69.98 64.13 1 1.08 0.26
CorNetMeSHProbeNet 83.47 70.50 5873 83.47 73.86 67.95 1 1.09 0.32
AttentionXML 8543 73.30 60.99 8543 76.54 70.45 1 0.95 0.21
CorNetAttentionXML 86.39 73.70 61.72 86.39 77.10 71.24 1 0.96 0.27

Table 3: Comparison results on AmazonCat-13K.

Model P@1 P@3 P@5 N@!1 N@3 N@5 #GPUs #hours model size (GB)
XML-CNN 9453 79.12 63.38 9453 88.19 85.61 1 2.57 0.64
CorNetXML-CNN 95.36 80.55 64.83 9536 89.54 87.11 1 4.17 0.86
BertXML 94.78 80.78 65.51 94.78 89.57 87.58 1 3.88 0.70
CorNetBertXML 9522 8137 66.03 95.22 90.13 88.13 1 3.70 0.92
MeSHProbeNet 95.63 81.84 66.47 95.63 90.65 88.69 1 9.08 0.77
CorNetMeSHProbeNet 96.10 82.82 67.57 96.04 91.54 89.78 1 9.22 0.99
AttentionXML 95.13 81.12 66.10 95.13 89.90 88.13 4 14.73 0.62
CorNetAttentionXML 96.19 82.81 67.63 96.19 91.54 89.81 4 20.21 0.84

Table 4: Comparison results on Wiki-500K.

Model P@1 P@3 P@5 N@1 N@3 N@5 #GPUs #hours model size (GB)
XML-CNN 63.36 43.92 3386 6336 53.78 51.46 2 19.57 1.63
CorNetXML-CNN  66.26 46.59 3580 66.26 56.86 54.39 2 22.88 2.44
BertXML 66.86 47.67 36.30 66.86 58.13 55.40 2 30.73 1.64
CorNetBertXML 67.14 47.85 36.43 67.14 58.33 55.59 2 35.53 2.44
MeSHProbeNet 64.57 44.34 34.14 64.57 54.72 52.53 2 40.18 1.65
CorNetMeSHProbeNet  69.79 50.68 38.98 69.79 61.47 58.91 2 43.67 2.45

vector for the same instance, then precision@k and nDCG@k are

defined as:

. 1
precision@k = % Z z,

leri(2)
z
DCG@k= ) ——,
3
e log(1+1) 3)
DCG@k
nDCG@k = min(k,llzllo) 1’
2 Y ey

where ri(2) is the ground truth indices corresponding to the top
k indices of the model predicted rank list, and ||z]lo counts the
number of ground truth labels for this instance. Precision@k and
nDCG@k are computed for each instance and then get averaged
over all instances.
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5.4 Performance Comparison

The performance and training details of all models on three datasets
are summarized in Tables 2, 3 and 4. Precision@k and nDCG@XKk,
denoted by P@k and N@k for short in the tables, are calculated
with k = 1,3,5. Some training details such as the training time
and the number of GPUs used are also reported. Due to the GPU
memory limitation, experiments for AttentionXML and CorNetAt-
tentionXML are only conducted on EUR-Lex and AmazonCat-13K.
It is worth mentioning that all the models reported here are single
models, not ensemble models.

As we can observe from Tables 2, 3 and 4, CorNet is able to
consistently improve the performance of all deep XMTC models
on all datasets in all metrics. Among all the deep models, the im-
provement over BertXML is the smallest, and we speculate that it is
due to the multi-head self-attention mechanism and the point-wise
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Figure 4: Training curves on EUR-Lex. Dotted lines denote
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feed-forward networks in BERT. Although the hidden state of each
special symbol only carries a part of the sequence features, this
structure enables BertXML to exploit the correlations among spe-
cial symbols [CLS_1], [CLS_2], ..., [CLS_M] at each layer, resulting
in smaller improvements by the CorNet module. Among all the
datasets, CorNet favors larger datasets because there exist more
label correlations for CorNet to utilize in larger datasets. Among
all evaluation metrics, the improvement is more significant for k=5
than for k=1. That is because k=1 represents the most confident la-
bel prediction. Rather than benefit from label correlations, the most
confident prediction works more often as an anchor to augment
the predictions of other labels with label correlations.

AttentionXML is the current state-of-the-art model. As reported
in [38], it achieved the highest evaluation scores in comparison
with other XMTC models, including many traditional non-deep
models, such as AnnexML [30], DiSMEC [2], PfastreXML [15], Para-
bel [27] and Bonsai [18]. We show that CorNetAttentionXML is
able to outperform AttentionXML and achieve the new state-of-
the-art results by incorporating label correlations. CorNetBertXML
and CorNetMeSHProbeNet also outperformed AttentionXML on
AmazonCat-13K.

In addition, as can be seen, the CorNet enhanced models are able
to maintain similar training time consumptions and model sizes to
their original counterpart models, thanks to the simple architecture
of CorNet.

We also observe that from (CorNet)XML-CNN, (CorNet)BertXML
to (CorNet)MeSHProbeNet, (CorNet)AttentionXML, the precision
grows higher and higher, but the training time consumption also be-
comes longer and longer. The high efficiency of (CorNet)XML-CNN
and (CorNet)BertXML is a result of the fact that the computation
of CNNs and BERT is more parallelizable than RNNs. However,
the performance scores do not necessarily mean CNNs and BERT
are inferior to RNNs in terms of sequence modeling. For example,
[4] shows that a carefully designed CNN architecture can achieve
comparable performance as RNNs on sequence modeling tasks. But
in order to be more consistent with the XMTC literature, we stick
to the original XML-CNN architecture instead of switching to the
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Figure 5: Training curves on AmazonCat-13K. Dotted lines
denote basic models and solid lines denote CorNet models.
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Figure 6: Training curves on Wiki-500K. Dotted lines denote
basic models and solid lines denote CorNet models.

CNN architecture in [4]. BERT has also demonstrated its power on
a variety of NLP tasks, but in order to make the comparison more
fair, we did not use a pretrained large-scale BERT. This limits the
strength of BertXML. (CorNet)XML-CNN and (CorNet)BertXML
have the potential to attain better performances by adopting more
complex designs, expanding model sizes and utilizing pretrained
models. Since the focus of this paper is specifically on making use
of label correlations, we adhere to the vanilla and non-pretrained
models.

5.5 Convergence Study

We have shown that the CorNet models need slightly longer train-
ing time than the basic models. That is because each training step
takes the CorNet models longer to finish than the basic models.
Thus, given a fixed number of training steps, the total training time
for the CorNet models would be longer. But in practice, the CorNet
architecture is able to help deep XMTC models converge faster. An
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Table 5: Performance comparison on model size.

Dataset model P@1 P@3 P@5 size (GB)
BURLe (X g r0m o 03
AmzonCa 13K 0 000w ey 099
e

example is CorNetBertXML in Table 3, whose training time is even
shorter than BertXML. The reason is that CorNetBertXML triggered
the early stopping mechanism and completed training before the
designated number of training epochs due to fast convergence.

The training curves of each model on different datasets are de-
picted in Figures 4, 5 and 6. The x-axis represents the training steps
and the y-axis represents the N@5 scores on the validation set. The
basic models are denoted by dotted lines and the CorNet models are
denoted by solid lines. Lines of the same color are used to represent
a model pair, e.g., BertXML and CorNetBertXML. As we can see,
CorNet significantly increases the convergence speed of all basic
models and improves the final N@5 scores on the validation set.

On the EUR-Lex dataset shown in Figure 4, XML-CNN and MeSH-
ProbeNet converge relatively slow among all the models, while
the convergence speed of CorNetXML-CNN and CorNetMeSH-
ProbeNet is greatly escalated. On the AmazonCat-13K dataset shown
in Figure 5, all basic models except for BertXML get stuck in the
early stage of the training, while the CorNet models are able to train
smoothly and rapidly in the beginning. On the Wiki-500K dataset
shown in Figure 6, CorNetXML-CNN and CorNetMeSHProbeNet,
especially CorNetMeSHProbeNet, converge much faster than their
basic counterpart models.

5.6 Ablation Analysis

We also conduct ablation experiments to gain a better understand-
ing of CorNet. The CorNetMeSHProbeNet model is used as the
backbone architecture here. The training procedure remains the
same as specified in Section 5.1.

5.6.1 Model Size. Since the CorNet module introduces several ad-
ditional layers into the base module, one might wonder whether the
performance improvement is a consequence of the label correlation
or simply the additional parameter size. To make the compari-
son more convincing, we include MeSHProbeNet-large, which is a
wider and deeper version of MeSHProbeNet. In order to minimize
the influence of model size, MeSHProbeNet-large is configured to
have the same size as CorNetMeSHProbeNet. Specifically, the RNN
hidden size is increased from 300 to 400, the number of probes is in-
creased from 5 to 10 and the depth of RNN layers is increased from
2 to 3. The comparison result is reported in Table 5, where Large
denotes MeSHProbeNet-large and CorNet denotes CorNetMeSH-
ProbeNet. We can see that although MeSHProbeNet-large achieves
minor improvement over MeSHProbeNet with the help of a wider
and deeper configuration, CorNetMeSHProbeNet is still able to
significantly outperform MeSHProbeNet-large.
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Table 6: CorNetMeSHProbeNet performance on EUR-Lex
with different numbers of CorNet blocks.

#CorNet blocks P@1 P@3 P@5 N@1 N@3 N@5
1 82.51 70.05 5840 8251 7330 67.57
2 83.47 70.50 58.73 83.47 73.86 67.95
3 83.50 70.35 58.69 83.50 73.67 67.96
4 84.14 70.95 5898 84.14 7439 68.38

5.6.2  Number of CorNet Blocks. As mention in Section 3, CorNet
is a flexible architecture and an arbitrary number of CorNet blocks
can be stacked together to form a deep CorNet module. To inves-
tigate the trade-off between performance and computational cost
associated with the depth of the CorNet module, we conduct experi-
ments with different numbers of CorNet blocks. As we can see from
Table 6, all CorNetMeSHProbeNet models significantly improve
over MeSHProbeNet in Table 2, which is equivalent to having 0
CorNet blocks. The performance is robust to the number of CorNet
blocks, although more CorNet blocks generally indicate a better
performance. 2 CorNet blocks achieve a good balance between per-
formance and complexity and are used as the default setting in the
our experiments.

5.7 Case Study

We also conduct a case study to illustrate how CorNet enhances raw
label predictions with label correlations. We utilize CorNetMeSH-
ProbeNet and select a document from the test set of the AmazonCat-
13K dataset. The product description is “Adidas Vigo Short. Cli-
malLite short with embroidered logo elastic waist and inner draw-
cord. 5 inseam. 100% polyester stretch satin. Imported.” and it has
7 ground truth labels: “sports & outdoors”, “team sports”, “soc-
cer”, “shorts”, “clothing”, “men”, and “women”. The top 10 labels
based on their raw predictions are: “sports & outdoors (0.690)”, “soc-
cer (0.661)”, “team sports (0.302)”, “accessories (0.207)”, “clothing
(0.144)”, “lacrosse (0.142)”, “athletic (0.139)”, “balls (0.133)”, “shoes
(0.123)”, and “home & kitchen (0.099)”. The top 10 labels based on
their CorNet enhanced predictions are: “sports & outdoors (1.000)”,
“team sports (1.000)”, “soccer (1.000)”, “shorts (0.999)”, “clothing
(0.998)”, “men (0.968)”, “women (0.620)”, “active shorts (0.005)”, “balls
(0.001)”, and “basketball (0.001)”. We can see that CorNet is able
to promote correlated labels, such as “sports & outdoors”, “men”,
and “women”. It is also able to demote uncorrelated labels, such
as “accessories” and “lacrosse”. Moreover, for the CorNet enhanced
predictions, the gap between relevant labels and irrelevant labels,
i.e., “women (0.620)” and “active shorts (0.005)”, is quite apparent.
While for the raw predictions, there is no clear boundary between
relevant labels and irrelevant labels. This makes the CorNet en-
hanced predictions more robust and also sheds some light on the
fast convergence speed of CorNet models.

6 CONCLUSION

In this paper we proposed CorNet, an architecture designed to im-
prove deep multi-label text classification models by enabling them
to exploit the correlation information among labels. CorNet is a
general and independent architecture that can be directly integrated
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with any deep XMTC models as an add-on enhancer module. Exten-
sive experimental results demonstrated the effectiveness of CorNet,
which is able to advance the state-of-the-art performance on several
different multi-label text classification datasets. Moreover, CorNet
also exhibited the ability to accelerate the convergence rate during
training.
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