
Recurrent Imputation for Multivariate Time Series
with Missing Values

Qiuling Suo∗, Liuyi Yao ∗, Guangxu Xun †, Jianhui Sun †, Aidong Zhang†
∗Department of Computer Science and Engineering, State University of New York at Buffalo, NY, US

Email: {qiulings, liuyiyao}@buffalo.edu
†Department of Computer Science, University of Virginia, VA, US

Email: {gx5bt, js9gu, aidong}@virginia.edu

I. INTRODUCTION

Multivariate time series data are ubiquitous in real-world
healthcare systems. It is a common issue that the data contain
missing values due to various reasons, such as sensor damage,
data corruption, patient dropout. There have been various
works on filling the missing values in multivariate time series.
Classical imputation methods include KNN-based, Matrix Fac-
torization based, and Expectation-Maximization (EM) based
imputation and so on. These methods are developed for general
imputation purpose and rarely utilize the temporal relations
between observations. Classical statistical time series models
such as autoregressive (AR) models and dynamic linear mod-
els (DLM) (e.g. [1]) can capture the temporal information,
but they are essentially linear and may not be suitable for
modern complex large-scale data. ImputeTS [2] employs time
dependencies on univariate time series imputation, which
ignores feature correlations. Recent works [3, 4] develop
the imputation framework that can take advantages of the
traditional methods and resolve their drawbacks. Another trend
of models is based on recurrent neural network (RNN) [5–
10], utilizing RNN to capture temporal dependencies and
further considering various aspects of the data characteristics,
such as time decay, feature correlation, residual link, and
temporal belief gate. In this paper, we propose an RNN-based
imputation method for filling the missing values in multivariate
time series. RNN is used to capture the temporal information
of time series. We use a global RNN and variable-specific
RNNs to perform imputation based on historical information,
and a fusion gate to combine them. At each timestamp, we
use a regression layer to impute the value of a certain variable
using other variables, by utilizing the relationship of variables.
Bi-directional imputation is adopted to improve the ability of
long-term memory and performance of starting timestamps.

II. METHODOLOGY

A. Definitions

Suppose a multivariate time series (MTS) X is a sequence
of T observations, and has D variables at each timestamp t,
it can be denoted as X = [x1,x2, ...,xT]

� ∈ R
T×D, where

xt = [x1
t , x

2
t , ..., x

D
t]� ∈ R

D. In reality, X may carry missing
values due to unexpected accidents. We introduce a masking
vector mt ∈ {0, 1}D to denote which variables are missing at

time stamp t: if xd
t is missing, md

t = 0; otherwise md
t = 1. In

the healthcare datasets, the MTS are usually the measurement
of vital signs and laboratory values. The overall framework
is shown in Figure 1. In the model, the input vector xt−1 at
time t− 1 is feed into an RNN cell RNNg and each variable
in xt−1 also goes through an RNN separately to obtain latent
representations ht and {hd

t }Dd=1, which contain the historical
information. The latent representations are used to perform
historical imputation. After that, each variable at time t − 1
are predicted using other variables at the same timestamp, i.e.
feature-level imputation. The imputed vector x̂t is then used
as the input of next RNN cells.

B. Global Imputation

RNN is used to memorize the historical characteristics of
the input time series, and feature regression is used to learn
the relationship among features. We feed the input vector at
timestamp t to obtain a global representation which contains
the information of all the variables as follows:

ht = RNNg(ht−1,xt), (1)
where ht ∈ R

p is the hidden state that memorizes the historical
information, p is the predefined size of hidden state, and xt ∈
R

D is the input vector of variables at time t. RNN() can
be any RNN variant, such as LSTM [11] and GRU [12]. We
use LSTM in our experiments. After obtaining the historical
latent representation, we use a fully connected layer to predict
variable values:

x̃gt = W�
g ht−1 + bg, (2)

where Wh ∈ Rp×D and bh ∈ R
D are model parameters to

be learned. In this way, we can obtain the estimation x̃gt using
historical observations.

C. Variable-Specific Imputation

In MTS, variables often have different patterns in terms
of time, e.g. some variables remain stable during a long
time interval on account of the homeostatic properties of
human body; some variables may change dramatically due to
the status of diseases. Using a global RNN model may not
sufficiently capture the variable-specific information. There-
fore, in addition to the global RNN, we use variable-specific

978-1-5386-9138-0/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on December 09,2023 at 19:40:31 UTC from IEEE Xplore. Restrictions apply.

inputs

historical
estimation

Observed
Imputed

feature­level
estimation

FC FC FC

FC FC FC

Missing

�

�

FC
Fully­connected�
layer

� � �

Global

Variable­
specific

Fig. 1. Recurrent imputation network.

{RNNd}Dd=1 to model time series for each variable separately.
For a variable d, its latent representation is written as:

hd
t = RNNd(h

d
t−1, x

d
t), (3)

where hd
t ∈ R

q is the variable-specific representation for the
time series of d-th variable, and q is the predefined size of
hidden states. Similar to Eq. (2), we can obtain the estimated
value for each variable:

x̃st = W�
s h

d
t−1 + bs, (4)

where W�
s ∈ Rq×1 and bs ∈ R are the parameters to be

learned. The imputed values for all the parameters are x̃st =
(x̃1t, x̃2t, ..., x̃Dt) ∈ R

D.
Given the global features ht and variable-specific features

hd
t obtained by Eq. (1) and Eq. (3), we calculate a fusion rate

rdt ∈ R for each variable at timestamp t:
rdt = σ(W�

rght +W�
rdh

d
t + b), (5)

where Wrg ∈ R
p, Wrd ∈ R

q and b ∈ R are the parameters
to be learned, and σ() is the activation function to rescale the
value to the range of [0,1]. The fusion rate is used to merge the
estimations from global RNN and specific RNN, as follows:

x̃t = rt � x̃gt + (1− rt)� x̃st, (6)
where rt = [r1t , r

2
t , ..., r

D
t] ∈ R

D, and � is the element-
wise multiplication operator. In this way, we can obtain the
historical imputation x̃ that can fully utilize the multivariate
information and variable-specific characteristics.

D. Feature-level Imputation

The above parts learn the representation utilizing the his-
torical information. After the above process, we can obtain a
complete vector x̃c

t = mtxt + (1 − mt)x̃t, whose missing
values are filled by x̃t. However, features have correlations
with each other, which can be useful in the imputation process.
Following [10], we add a regression layer to predict a certain
missing value based on the other features at time t and obtain
a feature-based imputation vector x̃ft as follows,

x̃ft = Wf x̃
c
t + bf , (7)

where Wf ∈ WD×D and bf ∈ RD are model parameters to
be learned. We then use a similar way to combine the historical
and feature-based estimation as [10]:

βt = σ(W�
β mt + bβ),

x̂t = βtx̃ft + (1− β)x̃t.
(8)

TABLE I
IMPUTATION PERFORMANCE IN TERMS OF NRMSD.

PCL PK PLCO2 PNA HCT HGB MCV
Forward 0.2609 0.3094 0.2725 0.2826 0.2957 0.3009 0.3204

Mean 0.2951 0.2767 0.3009 0.2932 0.2873 0.2924 0.3095
KNN 0.2204 0.2491 0.2415 0.2283 0.2200 0.2205 0.2669

3DMICE 0.1996 0.2613 0.2326 0.2136 0.1447 0.1429 0.2679
Proposed 0.1550 0.2298 0.1960 0.1736 0.0901 0.0875 0.2455

PLT WBC RDW PBUN PCRE PGLU Avg.
Forward 0.2569 0.2904 0.2912 0.2416 0.2797 0.3316 0.2873

Mean 0.3185 0.2995 0.3175 0.3127 0.3065 0.2818 0.2994
KNN 0.2477 0.2514 0.2527 0.2379 0.2436 0.2639 0.2418

3DMICE 0.2259 0.2554 0.2492 0.1848 .2291 0.2768 0.2218
Proposed 0.1749 0.2115 0.2076 0.1539 0.2099 0.2523 0.1837

Through incorporating the historical information and feature
correlations, we can obtain the estimated vector x̂t at time t.
The imputation loss is the mean square error between the es-
timated values and observed ones, denoted as Lmse(xt, x̂t) =∑ ‖mt(xt − x̂t)‖2. To accelerate the convergence speed,
we accumulate all the estimation errors of the estimations
x̂t, x̃t, x̃ft:

Lt = Lmse(xt, x̂t) + Lmse(xt, x̃t) + Lmse(xt, x̃ft) (9)

E. Bi-directional RNN

Although RNN provides an elegant way to model sequential
data, it may not be sufficiently trained when the sequence
is long and time interval between two observations is large.
Especially, it may fail when the first few time stamps need
to be imputed, as few information is available in the starting
part. To enable future information to be accessible, we employ
bidirectional-RNN (BRNN) to estimate the variables from both
forward and backward directions. Following Section II-B to
II-D, we can obtain the imputed values x̂t and x̂′

t from forward
and backward imputation respectively. The final estimation in
the t-th timestamp is the mean of x̂t and x̂′

t.

III. EXPERIMENTS

A. Implementation Details

We first normalize the values for each variable and each
patient before feeding them into the developed framework. The
imputation framework is implemented with Pytorch. Patients
have different numbers of recorded time points, and the length
of MTS varies from 10 to 260. To enable mini-batch optimiza-
tion, we pad zeros to make the training samples in the same
batch have a fixed sequence length, which is the maximum
length in a certain mini-batch. We use Adam optimizer to
optimize the model parameters.

B. Results

The proposed framework is validated on the provided train-
ing dataset. We report the results of the imputation accuracy
using the provided validation mask. The evaluation metric is
nRMSD as defined in [4]. The imputation performance for 13
variables is shown in Table I. The baseline methods include:
mean, forward imputation, knn and 3D-MICE. In forward
imputation, the missing values are filled with the last observed
value of the same variable, and if no value is observed before
the missing one, the mean is used to impute.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on December 09,2023 at 19:40:31 UTC from IEEE Xplore. Restrictions apply.

REFERENCES
[1] C. F. Ansley and R. Kohn, “On the estimation of arima models with

missing values,” pp. 9–37, 1984.
[2] S. Moritz and T. Bartz-Beielstein, “imputets: time series missing value

imputation in r,” The R Journal, 2017.
[3] H.-F. Yu, N. Rao, and I. S. Dhillon, “Temporal regularized matrix

factorization for high-dimensional time series prediction,” in Advances
in neural information processing systems, 2016, pp. 847–855.

[4] Y. Luo, P. Szolovits, A. S. Dighe, and J. M. Baron, “3d-mice: inte-
gration of cross-sectional and longitudinal imputation for multi-analyte
longitudinal clinical data,” Journal of the American Medical Informatics
Association, 2017.

[5] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent
neural networks for multivariate time series with missing values,”
Scientific reports, vol. 8, no. 1, p. 6085, 2018.

[6] J. Yoon, W. R. Zame, and M. van der Schaar, “Multi-directional recurrent
neural networks: A novel method for estimating missing data,” 2017.

[7] L. Shen, Q. Ma, and S. Li, “End-to-end time series imputation via
residual short paths,” in Asian Conference on Machine Learning, 2018,
pp. 248–263.

[8] Y.-J. Kim and M. Chi, “Temporal belief memory: Imputing missing data
during rnn training.” in In Proceedings of the 27th International Joint
Conference on Artificial Intelligence (IJCAI-2018), 2018.

[9] Y. Luo, X. Cai, Y. Zhang, J. Xu et al., “Multivariate time series
imputation with generative adversarial networks,” in Advances in Neural
Information Processing Systems, 2018, pp. 1596–1607.

[10] W. Cao, D. Wang, J. Li, H. Zhou, L. Li, and Y. Li, “Brits: Bidirectional
recurrent imputation for time series,” in Advances in Neural Information
Processing Systems, 2018, pp. 6775–6785.

[11] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with lstm,” 1999.

[12] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on December 09,2023 at 19:40:31 UTC from IEEE Xplore. Restrictions apply.

